[Nonparametric selection of impact points in functional regression]
A nonlinear sparse model is defined for selecting impact points in regression problems with functional predictors, and a variable selection procedure based on screening and splitting is proposed. Some asymptotics are stated both for the impact points and for the parameters of the model.
Dans un problème de régression avec variable explicative fonctionnelle, on s'intéresse à la sélection des points les plus informatifs. Un modèle parcimonieux de type non paramétrique ainsi qu'une procédure de choix de variables basée sur une pré-sélection par dépistage sont proposés, et des résultats asymptotiques sont établis concernant à la fois la sélection des points informatifs et l'estimation des paramètres du modèle.
Accepted:
Published online:
Germán Aneiros 1; Philippe Vieu 2
@article{CRMATH_2016__354_5_538_0, author = {Germ\'an Aneiros and Philippe Vieu}, title = {Mod\`ele non param\'etrique parcimonieux pour la d\'etection des points d'impact d'une variable fonctionnelle}, journal = {Comptes Rendus. Math\'ematique}, pages = {538--542}, publisher = {Elsevier}, volume = {354}, number = {5}, year = {2016}, doi = {10.1016/j.crma.2016.01.019}, language = {fr}, }
TY - JOUR AU - Germán Aneiros AU - Philippe Vieu TI - Modèle non paramétrique parcimonieux pour la détection des points d'impact d'une variable fonctionnelle JO - Comptes Rendus. Mathématique PY - 2016 SP - 538 EP - 542 VL - 354 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2016.01.019 LA - fr ID - CRMATH_2016__354_5_538_0 ER -
Germán Aneiros; Philippe Vieu. Modèle non paramétrique parcimonieux pour la détection des points d'impact d'une variable fonctionnelle. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 538-542. doi : 10.1016/j.crma.2016.01.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.019/
[1] Variable selection in infinite-dimensional problems, Stat. Probab. Lett., Volume 94 (2014), pp. 12-20
[2] Partial linear modelling with multi-functional covariates, Comput. Stat., Volume 30 (2015), pp. 647-671
[3] G. Aneiros, P. Vieu, Sparse nonparametric model for regression with functional covariate, en préparation, 2015.
[4] Statistics for High-Dimensional Data: Methods, Theory and Applications, Springer Series in Statistics, Springer, Heidelberg, 2011
[5] Adaptive estimation in the functional nonparametric regression model, J. Multivar. Anal. (2015) | DOI
[6] A partial overview of the theory of statistics with functional data, J. Stat. Plan. Inference, Volume 147 (2014), pp. 1-23
[7] Functional principal components regression and functional partial least square regression: an overview and a comparative study, Rev. Int. Stat. (2015) | DOI
[8] Most-predictive design points for functional data predictors, Biometrika, Volume 97 (2010), pp. 807-824
[9] Nonparametric Functional Data Analysis, Springer Series in Statistics, Springer-Verlag, New York, 2006
[10] An introduction to recent advances in high/infinite dimensional statistics, J. Multivar. Anal. (2015) | DOI
[11] Inference for Functional Data with Applications, Springer Series in Statistics, Springer, New York, 2012
[12] Theoretical Foundations of FDA with an Introduction to Linear Operators, Wiley and Sons, Chichester, 2015
[13] Variable selection in nonparametric additive models, Ann. Stat., Volume 38 (2010) no. 4, pp. 2282-2313
[14] Factor models and variable selection in high-dimensional regression analysis, Ann. Stat., Volume 39 (2011) no. 5, pp. 2410-2447
[15] Uniform consistency of kNN regressors for functional variables, Stat. Probab. Lett., Volume 83 (2013) no. 8, pp. 1863-1870
[16] A k-nearest approach for functional regression, Stat. Probab. Lett., Volume 10 (2008), pp. 1189-1193
[17] Fractals with point impact in functional linear regression, Ann. Stat., Volume 38 (2010) no. 4, pp. 2559-2586
[18] Un résultat de consistance pour des SVM fonctionnels par interpolation Spline, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006) no. 8, pp. 555-560
[19] Wavelet-based LASSO in functional linear regression, J. Comput. Graph. Stat., Volume 21 (2012) no. 3, pp. 600-617
[20] Analysis of Variance for Functional Data, Monographs on Statistics and Applied Probability, vol. 127, CRC Press, Boca Raton, FL, USA, 2014
[21] Variable selection after screening: with or without splitting?, Comput. Stat., Volume 30 (2015) no. 1, pp. 191-204
Cited by Sources:
Comments - Policy