We give the first- and second-order asymptotic expansions for the central limit theorem about the distribution of particles in a branching random walk on the real line. In particular, our first-order expansion reveals the exact convergence rate in the central limit theorem; it extends and improves a known result for the branching Wiener process.
Nous donnons les développements asymptotiques d'ordres un et deux dans le théorème central limite sur la distribution des particules dans une marche aléatoire avec branchement sur la droite réelle. En particulier, le développement asymptotique d'ordre un révèle la vitesse exacte de convergence du théorème central limite, ce qui étend et améliore un résultat connu pour le processus de Wiener avec branchement.
Accepted:
Published online:
Zhiqiang Gao 1; Quansheng Liu 2, 3
@article{CRMATH_2016__354_5_532_0, author = {Zhiqiang Gao and Quansheng Liu}, title = {First- and second-order expansions in the central limit theorem for a branching random walk}, journal = {Comptes Rendus. Math\'ematique}, pages = {532--537}, publisher = {Elsevier}, volume = {354}, number = {5}, year = {2016}, doi = {10.1016/j.crma.2016.01.021}, language = {en}, }
TY - JOUR AU - Zhiqiang Gao AU - Quansheng Liu TI - First- and second-order expansions in the central limit theorem for a branching random walk JO - Comptes Rendus. Mathématique PY - 2016 SP - 532 EP - 537 VL - 354 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2016.01.021 LA - en ID - CRMATH_2016__354_5_532_0 ER -
Zhiqiang Gao; Quansheng Liu. First- and second-order expansions in the central limit theorem for a branching random walk. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 532-537. doi : 10.1016/j.crma.2016.01.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.021/
[1] Convergence rates for branching processes, Ann. Probab., Volume 4 (1976) no. 1, pp. 139-146
[2] Branching Processes, Die Grundlehren der mathematischen Wissenschaften, vol. 196, Springer-Verlag, New York, 1972
[3] The central limit theorem for the supercritical branching random walk, and related results, Stoch. Process. Appl., Volume 34 (1990) no. 2, pp. 255-274
[4] Exact convergence rates for the distribution of particles in branching random walks, Ann. Appl. Probab., Volume 11 (2001) no. 4, pp. 1242-1262
[5] Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time, Stoch. Process. Appl. (2016) (To appear in) | HAL
[6] Second-order asymptotic expansion for the distribution of particles in a branching random walk with a random environment in time, 2015 | HAL
[7] Central limit theorems for a branching random walk with a random environment in time, Acta Math. Sci. Ser. B Engl. Ed., Volume 34 (2014) no. 2, pp. 501-512
[8] The Theory of Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, vol. 119, Springer-Verlag, Berlin, 1963
[9] Branching random walks with random environments in time, Front. Math. China, Volume 9 (2014) no. 4, pp. 835-842
[10] Distribution of levels in high-dimensional random landscapes, Ann. Appl. Probab., Volume 22 (2012) no. 1, pp. 337-362
[11] Branching random walks. II, Stoch. Process. Appl., Volume 4 (1976) no. 1, pp. 15-31
[12] Sums of Independent Random Variables, Springer-Verlag, New York, Heidelberg, 1975 (Translated from the Russian by A.A. Brown, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82)
Cited by Sources:
Comments - Policy