Comptes Rendus
Probability theory
First- and second-order expansions in the central limit theorem for a branching random walk
Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 532-537.

We give the first- and second-order asymptotic expansions for the central limit theorem about the distribution of particles in a branching random walk on the real line. In particular, our first-order expansion reveals the exact convergence rate in the central limit theorem; it extends and improves a known result for the branching Wiener process.

Nous donnons les développements asymptotiques d'ordres un et deux dans le théorème central limite sur la distribution des particules dans une marche aléatoire avec branchement sur la droite réelle. En particulier, le développement asymptotique d'ordre un révèle la vitesse exacte de convergence du théorème central limite, ce qui étend et améliore un résultat connu pour le processus de Wiener avec branchement.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.01.021

Zhiqiang Gao 1; Quansheng Liu 2, 3

1 School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, PR China
2 Univ. Bretagne-Sud, CNRS UMR 6205, LMBA, campus de Tohannic, 56000 Vannes, France
3 Changsha University of Science and Technology, School of Mathematics and Statistics, Changsha 410004, China
@article{CRMATH_2016__354_5_532_0,
     author = {Zhiqiang Gao and Quansheng Liu},
     title = {First- and second-order expansions in the central limit theorem for a branching random walk},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {532--537},
     publisher = {Elsevier},
     volume = {354},
     number = {5},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.021},
     language = {en},
}
TY  - JOUR
AU  - Zhiqiang Gao
AU  - Quansheng Liu
TI  - First- and second-order expansions in the central limit theorem for a branching random walk
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 532
EP  - 537
VL  - 354
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.021
LA  - en
ID  - CRMATH_2016__354_5_532_0
ER  - 
%0 Journal Article
%A Zhiqiang Gao
%A Quansheng Liu
%T First- and second-order expansions in the central limit theorem for a branching random walk
%J Comptes Rendus. Mathématique
%D 2016
%P 532-537
%V 354
%N 5
%I Elsevier
%R 10.1016/j.crma.2016.01.021
%G en
%F CRMATH_2016__354_5_532_0
Zhiqiang Gao; Quansheng Liu. First- and second-order expansions in the central limit theorem for a branching random walk. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 532-537. doi : 10.1016/j.crma.2016.01.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.021/

[1] S. Asmussen Convergence rates for branching processes, Ann. Probab., Volume 4 (1976) no. 1, pp. 139-146

[2] K.B. Athreya; P.E. Ney Branching Processes, Die Grundlehren der mathematischen Wissenschaften, vol. 196, Springer-Verlag, New York, 1972

[3] J.D. Biggins The central limit theorem for the supercritical branching random walk, and related results, Stoch. Process. Appl., Volume 34 (1990) no. 2, pp. 255-274

[4] X. Chen Exact convergence rates for the distribution of particles in branching random walks, Ann. Appl. Probab., Volume 11 (2001) no. 4, pp. 1242-1262

[5] Z.-Q. Gao; Q. Liu Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time, Stoch. Process. Appl. (2016) (To appear in) | HAL

[6] Z.-Q. Gao; Q. Liu Second-order asymptotic expansion for the distribution of particles in a branching random walk with a random environment in time, 2015 | HAL

[7] Z.-Q. Gao; Q. Liu; H. Wang Central limit theorems for a branching random walk with a random environment in time, Acta Math. Sci. Ser. B Engl. Ed., Volume 34 (2014) no. 2, pp. 501-512

[8] T.E. Harris The Theory of Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, vol. 119, Springer-Verlag, Berlin, 1963

[9] C. Huang; X. Liang; Q. Liu Branching random walks with random environments in time, Front. Math. China, Volume 9 (2014) no. 4, pp. 835-842

[10] Z. Kabluchko Distribution of levels in high-dimensional random landscapes, Ann. Appl. Probab., Volume 22 (2012) no. 1, pp. 337-362

[11] N. Kaplan; S. Asmussen Branching random walks. II, Stoch. Process. Appl., Volume 4 (1976) no. 1, pp. 15-31

[12] V.V. Petrov Sums of Independent Random Variables, Springer-Verlag, New York, Heidelberg, 1975 (Translated from the Russian by A.A. Brown, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82)

Cited by Sources:

Comments - Policy