We provide a simple proof for a higher-dimensional version of the Poincaré–Birkhoff theorem, which applies to Poincaré time maps of Hamiltonian systems. These maps are required neither to be close to the identity nor to have a monotone twist.
Nous fournissons une preuve simple d'une version en plusieurs dimensions du théorème de Poincaré–Birkhoff qui s'applique aux applications de Poincaré des systèmes hamiltoniens. Ces applications ne sont tenues, ni d'être proches de l'identité, ni d'avoir une torsion monotone.
Accepted:
Published online:
Alessandro Fonda 1; Antonio J. Ureña 2
@article{CRMATH_2016__354_5_475_0, author = {Alessandro Fonda and Antonio J. Ure\~na}, title = {A higher-dimensional {Poincar\'e{\textendash}Birkhoff} theorem without monotone twist}, journal = {Comptes Rendus. Math\'ematique}, pages = {475--479}, publisher = {Elsevier}, volume = {354}, number = {5}, year = {2016}, doi = {10.1016/j.crma.2016.01.023}, language = {en}, }
Alessandro Fonda; Antonio J. Ureña. A higher-dimensional Poincaré–Birkhoff theorem without monotone twist. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 475-479. doi : 10.1016/j.crma.2016.01.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.023/
[1] The Birkhoff–Lewis fixed point theorem and a conjecture of V.I. Arnold, Invent. Math., Volume 73 (1983), pp. 33-49
[2] Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990
[3] On the higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows, 1: the indefinite twist, 2013 www.dmi.units.it/~fonda/2013_Fonda-Urena.pdf (preprint, available online at)
[4] On the higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows, 2: the avoiding rays condition, 2014 www.dmi.units.it/~fonda/2014_Fonda-Urena.pdf (preprint, available online at)
[5] A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal., Volume 15 (1990), pp. 725-739
[6] Cohomology and Morse theory for strongly indefinite functionals, Math. Z., Volume 209 (1992), pp. 375-418
Cited by Sources:
Comments - Policy