Comptes Rendus
Ordinary differential equations/Dynamical systems
A higher-dimensional Poincaré–Birkhoff theorem without monotone twist
[Un théorème de Poincaré–Birkhoff en plusieurs dimensions sans torsion monotone]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 475-479.

Nous fournissons une preuve simple d'une version en plusieurs dimensions du théorème de Poincaré–Birkhoff qui s'applique aux applications de Poincaré des systèmes hamiltoniens. Ces applications ne sont tenues, ni d'être proches de l'identité, ni d'avoir une torsion monotone.

We provide a simple proof for a higher-dimensional version of the Poincaré–Birkhoff theorem, which applies to Poincaré time maps of Hamiltonian systems. These maps are required neither to be close to the identity nor to have a monotone twist.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.01.023

Alessandro Fonda 1 ; Antonio J. Ureña 2

1 Dipartimento di Matematica e Geoscienze, Università di Trieste, P.le Europa, 1, 34127 Trieste, Italy
2 Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
@article{CRMATH_2016__354_5_475_0,
     author = {Alessandro Fonda and Antonio J. Ure\~na},
     title = {A higher-dimensional {Poincar\'e{\textendash}Birkhoff} theorem without monotone twist},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {475--479},
     publisher = {Elsevier},
     volume = {354},
     number = {5},
     year = {2016},
     doi = {10.1016/j.crma.2016.01.023},
     language = {en},
}
TY  - JOUR
AU  - Alessandro Fonda
AU  - Antonio J. Ureña
TI  - A higher-dimensional Poincaré–Birkhoff theorem without monotone twist
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 475
EP  - 479
VL  - 354
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2016.01.023
LA  - en
ID  - CRMATH_2016__354_5_475_0
ER  - 
%0 Journal Article
%A Alessandro Fonda
%A Antonio J. Ureña
%T A higher-dimensional Poincaré–Birkhoff theorem without monotone twist
%J Comptes Rendus. Mathématique
%D 2016
%P 475-479
%V 354
%N 5
%I Elsevier
%R 10.1016/j.crma.2016.01.023
%G en
%F CRMATH_2016__354_5_475_0
Alessandro Fonda; Antonio J. Ureña. A higher-dimensional Poincaré–Birkhoff theorem without monotone twist. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 475-479. doi : 10.1016/j.crma.2016.01.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.01.023/

[1] C.C. Conley; E.J. Zehnder The Birkhoff–Lewis fixed point theorem and a conjecture of V.I. Arnold, Invent. Math., Volume 73 (1983), pp. 33-49

[2] I. Ekeland Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990

[3] A. Fonda; A.J. Ureña On the higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows, 1: the indefinite twist, 2013 www.dmi.units.it/~fonda/2013_Fonda-Urena.pdf (preprint, available online at)

[4] A. Fonda; A.J. Ureña On the higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows, 2: the avoiding rays condition, 2014 www.dmi.units.it/~fonda/2014_Fonda-Urena.pdf (preprint, available online at)

[5] A. Szulkin A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal., Volume 15 (1990), pp. 725-739

[6] A. Szulkin Cohomology and Morse theory for strongly indefinite functionals, Math. Z., Volume 209 (1992), pp. 375-418

  • Lakshmi Burra; Fabio Zanolin The Autonomous Duffing Equation, The Duffing Equation (2025), p. 1 | DOI:10.1007/978-981-97-8301-4_1
  • Lakshmi Burra; Fabio Zanolin Applications to the Superlinear Duffing Equation, The Duffing Equation (2025), p. 189 | DOI:10.1007/978-981-97-8301-4_5
  • Lakshmi Burra; Fabio Zanolin The Periodically Forced Duffing Equation, The Duffing Equation (2025), p. 31 | DOI:10.1007/978-981-97-8301-4_2
  • Lakshmi Burra; Fabio Zanolin Monotonicity of the period function and chaotic dynamics in a class of singular ODEs, Journal of Mathematical Analysis and Applications, Volume 507 (2022) no. 2, p. 17 (Id/No 125814) | DOI:10.1016/j.jmaa.2021.125814 | Zbl:1492.34039
  • Tobia Dondè; Fabio Zanolin Multiple periodic solutions for a Duffing type equation with one-sided sublinear nonlinearity: beyond the Poincaré-Birkhoff twist theorem, Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019, Cham: Springer, 2020, pp. 207-223 | DOI:10.1007/978-3-030-56323-3_17 | Zbl:1456.34040
  • Chunlian Liu; Dingbian Qian A new fixed point theorem and periodic solutions of nonconservative weakly coupled systems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 192 (2020), p. 15 (Id/No 111668) | DOI:10.1016/j.na.2019.111668 | Zbl:1472.34078
  • Burra S. Lakshmi; Fabio Zanolin Periodically perturbed superlinear Duffing type equations with singularities: subharmonic solutions and complex dynamics, Dynamics of Continuous, Discrete Impulsive Systems. Series A. Mathematical Analysis, Volume 26 (2019) no. 5, pp. 349-364 | Zbl:1436.34037
  • Alessandro Fonda; Paolo Gidoni An avoiding cones condition for the Poincaré-Birkhoff theorem, Journal of Differential Equations, Volume 262 (2017) no. 2, pp. 1064-1084 | DOI:10.1016/j.jde.2016.10.002 | Zbl:1369.37064
  • Alessandro Calamai; Andrea Sfecci Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations, NoDEA. Nonlinear Differential Equations and Applications, Volume 24 (2017) no. 1, p. 17 (Id/No 4) | DOI:10.1007/s00030-016-0427-5 | Zbl:1366.34057

Cité par 9 documents. Sources : Crossref, zbMATH

Commentaires - Politique