Comptes Rendus
Ordinary differential equations/Analytic geometry
On the number of fibrations transverse to a rational curve in complex surfaces
Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 470-474.

We investigate the existence, and lack of uniqueness, of a holomorphic fibration by discs transverse to a rational curve in a complex surface.

Nous étudions l'existence et le défaut d'unicité de fibrations holomorphes en disques transverses à une courbe rationnelle dans une surface complexe.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.03.002

Maycol Falla Luza 1; Frank Loray 2

1 UFF, Universidad Federal Fluminense, rua Mário Santos Braga S/N, Niterói, RJ, Brazil
2 IRMAR, Université de Rennes-1, 35042 Rennes cedex, France
@article{CRMATH_2016__354_5_470_0,
     author = {Maycol Falla Luza and Frank Loray},
     title = {On the number of fibrations transverse to a rational curve in complex surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {470--474},
     publisher = {Elsevier},
     volume = {354},
     number = {5},
     year = {2016},
     doi = {10.1016/j.crma.2016.03.002},
     language = {en},
}
TY  - JOUR
AU  - Maycol Falla Luza
AU  - Frank Loray
TI  - On the number of fibrations transverse to a rational curve in complex surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 470
EP  - 474
VL  - 354
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2016.03.002
LA  - en
ID  - CRMATH_2016__354_5_470_0
ER  - 
%0 Journal Article
%A Maycol Falla Luza
%A Frank Loray
%T On the number of fibrations transverse to a rational curve in complex surfaces
%J Comptes Rendus. Mathématique
%D 2016
%P 470-474
%V 354
%N 5
%I Elsevier
%R 10.1016/j.crma.2016.03.002
%G en
%F CRMATH_2016__354_5_470_0
Maycol Falla Luza; Frank Loray. On the number of fibrations transverse to a rational curve in complex surfaces. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 470-474. doi : 10.1016/j.crma.2016.03.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.002/

[1] M. Falla Luza, F. Loray, Projective connections and neighborhoods of rational lines, in preparation.

[2] H. Grauert Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368

[3] J.C. Hurtubise; N. Kamran Projective connections, double fibrations, and formal neighborhoods of lines, Math. Ann., Volume 292 (1992), pp. 383-409

[4] W. Kryński Webs and projective structures on a plane, Differ. Geom. Appl., Volume 7 (2014), pp. 133-140

[5] S.R. LeBrun Jr., Spaces of complex geodesics and related structures, PhD thesis.

[6] M.B. Mishustin Neighborhoods of the Riemann sphere in complex surfaces, Funct. Anal. Appl., Volume 27 (1993), pp. 176-185

[7] V.I. Savel'ev Zero-type imbedding of a sphere into complex surfaces, Vestn. Mosk. Univ., Ser. I Mat. Mekh., Volume 85 (1982) no. 4, pp. 28-32

Cited by Sources:

Comments - Policy