[Choix de fenêtres de lissage pour un estimateur non paramétrique à noyau discret]
Cette note se focalise sur l'estimation non paramétrique à noyau associé discret d'une fonction de masse de probabilité. Une expression de la fenêtre optimale minimisant la partie asymptotique de l'erreur quadratique globale est donnée. Des expressions asymptotiques pour le biais et la variance d'un critère de sélection par validation croisée sont également présentées. Enfin, les deux méthodes de choix de fenêtre sont illustrées par des simulations et une application sur des données réelles.
This note concentrates on the nonparametric estimation of a probability mass function (p.m.f.) using discrete associated kernels. An expression of the optimal bandwidth minimizing the asymptotic part of the global squared error is given. Some asymptotic expressions of bias and variance of the cross-validation criterion are also presented. At last, the two bandwidth selection procedures are illustrated through some simulations and an application on a real count data set.
Accepté le :
Publié le :
Tristan Senga Kiessé 1
@article{CRMATH_2016__354_7_735_0, author = {Tristan Senga Kiess\'e}, title = {On bandwidth parameter choices for discrete nonparametric kernel estimator}, journal = {Comptes Rendus. Math\'ematique}, pages = {735--740}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.02.012}, language = {en}, }
Tristan Senga Kiessé. On bandwidth parameter choices for discrete nonparametric kernel estimator. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 735-740. doi : 10.1016/j.crma.2016.02.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.012/
[1] Multivariate binary discrimination by the kernel method, Biometrika, Volume 63 (1976), pp. 413-420
[2] An alternative method of cross-validation for the smoothing of density estimates, Biometrika, Volume 71 (1984), pp. 352-360
[3] Discrete associated kernel method and extensions, Stat. Methodol., Volume 8 (2011), pp. 497-516
[4] Discrete triangular distributions and non-parametric estimation for probability mass function, J. Nonparametr. Stat., Volume 19 (2007), pp. 241-254
[5] Extensions of discrete triangular distributions and boundary bias in kernel estimation for discrete functions, Stat. Probab. Lett., Volume 80 (2010), pp. 1655-1662
[6] A comparison of cross-validation techniques in density estimation, Ann. Stat., Volume 15 (1987), pp. 152-162
[7] Smoothing methods for discrete data (M.G. Schimek, ed.), Smoothing and Regression: Approaches, Computation, and Application, Wiley, New York, 2000, pp. 193-228
[8] A comparative study of kernel-based density estimates for categorical data, Technometrics, Volume 22 (1980), pp. 259-268
Cité par Sources :
Commentaires - Politique