Comptes Rendus
Statistics
On bandwidth parameter choices for discrete nonparametric kernel estimator
[Choix de fenêtres de lissage pour un estimateur non paramétrique à noyau discret]
Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 735-740.

Cette note se focalise sur l'estimation non paramétrique à noyau associé discret d'une fonction de masse de probabilité. Une expression de la fenêtre optimale minimisant la partie asymptotique de l'erreur quadratique globale est donnée. Des expressions asymptotiques pour le biais et la variance d'un critère de sélection par validation croisée sont également présentées. Enfin, les deux méthodes de choix de fenêtre sont illustrées par des simulations et une application sur des données réelles.

This note concentrates on the nonparametric estimation of a probability mass function (p.m.f.) using discrete associated kernels. An expression of the optimal bandwidth minimizing the asymptotic part of the global squared error is given. Some asymptotic expressions of bias and variance of the cross-validation criterion are also presented. At last, the two bandwidth selection procedures are illustrated through some simulations and an application on a real count data set.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.02.012

Tristan Senga Kiessé 1

1 INRA, UMR 1069, Sol Agro et Hydrosystème Spatialisation, 35000 Rennes, France
@article{CRMATH_2016__354_7_735_0,
     author = {Tristan Senga Kiess\'e},
     title = {On bandwidth parameter choices for discrete nonparametric kernel estimator},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {735--740},
     publisher = {Elsevier},
     volume = {354},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crma.2016.02.012},
     language = {en},
}
TY  - JOUR
AU  - Tristan Senga Kiessé
TI  - On bandwidth parameter choices for discrete nonparametric kernel estimator
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 735
EP  - 740
VL  - 354
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2016.02.012
LA  - en
ID  - CRMATH_2016__354_7_735_0
ER  - 
%0 Journal Article
%A Tristan Senga Kiessé
%T On bandwidth parameter choices for discrete nonparametric kernel estimator
%J Comptes Rendus. Mathématique
%D 2016
%P 735-740
%V 354
%N 7
%I Elsevier
%R 10.1016/j.crma.2016.02.012
%G en
%F CRMATH_2016__354_7_735_0
Tristan Senga Kiessé. On bandwidth parameter choices for discrete nonparametric kernel estimator. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 735-740. doi : 10.1016/j.crma.2016.02.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.012/

[1] J. Aitchison; C.G.G. Aitken Multivariate binary discrimination by the kernel method, Biometrika, Volume 63 (1976), pp. 413-420

[2] A. Bowman An alternative method of cross-validation for the smoothing of density estimates, Biometrika, Volume 71 (1984), pp. 352-360

[3] C.C. Kokonendji; T. Senga Kiessé Discrete associated kernel method and extensions, Stat. Methodol., Volume 8 (2011), pp. 497-516

[4] C.C. Kokonendji; T. Senga Kiessé; S.S. Zocchi Discrete triangular distributions and non-parametric estimation for probability mass function, J. Nonparametr. Stat., Volume 19 (2007), pp. 241-254

[5] C.C. Kokonendji; S.S. Zocchi Extensions of discrete triangular distributions and boundary bias in kernel estimation for discrete functions, Stat. Probab. Lett., Volume 80 (2010), pp. 1655-1662

[6] J.S. Marron A comparison of cross-validation techniques in density estimation, Ann. Stat., Volume 15 (1987), pp. 152-162

[7] J.S. Simonoff; G. Tutz Smoothing methods for discrete data (M.G. Schimek, ed.), Smoothing and Regression: Approaches, Computation, and Application, Wiley, New York, 2000, pp. 193-228

[8] D.M. Titterington A comparative study of kernel-based density estimates for categorical data, Technometrics, Volume 22 (1980), pp. 259-268

Cité par Sources :

Commentaires - Politique