In this paper we consider the process where is the space of the càdlàg function and the p-th derivative has a possible jump. One envisages to detect the intensity and position of the jumps in the context of p derivatives. Asymptotic results are derived.
Dans cet article, nous considérons le processus , où est l'espace des fonctions càdlàg et où la pe dérivée a un saut éventuel. Nous envisageons de détecter l'intensité et la position des sauts. Des résultats asymptotiques sont obtenus.
Accepted:
Published online:
Denis Bosq 1
@article{CRMATH_2016__354_7_729_0, author = {Denis Bosq}, title = {Estimating jump intensity and detecting jump instants in the context of \protect\emph{p} derivatives}, journal = {Comptes Rendus. Math\'ematique}, pages = {729--734}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.03.016}, language = {en}, }
Denis Bosq. Estimating jump intensity and detecting jump instants in the context of p derivatives. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 729-734. doi : 10.1016/j.crma.2016.03.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.016/
[1] Convergence of Probability Measures, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons Inc., New York, 1999
[2] Exponential bounds for intensity of jumps, Math. Methods Statist., Volume 23 (2014) no. 4, pp. 239-255
[3] Detecting and estimating intensity of jumps for discretely observed processes, J. Multivariate Anal., Volume 146 (2016), pp. 119-137
[4] Estimating the order of mean-square derivatives with quadratic variations, Stat. Inference Stoch. Process., Volume 14 (2011) no. 1, pp. 85-99
[5] Global smoothness estimation of a Gaussian process from general sequence designs, Electron. J. Stat., Volume 8 (2014) no. 1, pp. 1152-1187
[6] Estimating and detecting jumps. Applications to -valued linear processes (M. Hallin; D.M. Mason; D. Pfeifer; J.G. Steinebach, eds.), Mathematical Statistics and Limit Theorems. Festschrift in Honour of Paul Deheuvels, Springer, 2015, p. 4166
[7] Detecting derivative discontinuity locations in piecewise continuous functions from Fourier spectral data, Numer. Algorithms, Volume 46 (2007) no. 1, pp. 59-84
[8] A simple model for market booms and crashes, Math. Financ. Econ., Volume 8 (2014) no. 3, pp. 291-319
[9] A shearing crack in a semi-space under plane strain conditions, Arch. Mech. (Arch. Mech. Stos.), Volume 25 (1973), pp. 421-440
[10] Inference for Functional Data with Applications, Springer Series in Statistics, Springer, New York, 2012
[11] Jump detection in a regression curve and its derivative, Technometrics, Volume 51 (2009) no. 3, pp. 289-305
[12] Denoising with higher order derivatives of bounded variation and an application to parameter estimation, Computing, Volume 60 (1998) no. 1, pp. 1-27
[13] Asymptotic behavior of large solutions to H-systems with perturbations, Nonlinear Anal., Volume 58 (2004) no. 3–4, pp. 459-475
[14] Superpositions and higher order Gaussian beams, Commun. Math. Sci., Volume 6 (2008) no. 2, pp. 449-475
Cited by Sources:
Comments - Policy