Motivated by a question of J. Globevnik, we show that a proper holomorphic immersion of the unit disk into or a proper holomorphic embedding may have arbitrary growth. Also, using tropical power series, we characterize those radial weights w on the complex plane for which there exist and a proper holomorphic map such that is equivalent to .
Motivés par une question de J. Globevnik, nous montrons qu'une immersion holomorphe propre du disque unité dans ou un plongement holomorphe propre peut avoir une croissance arbitraire. En outre, en utilisant les séries entières tropicales, nous caractérisons les poids radiaux w sur le plan complexe pour lesquels il existe et une application holomorphe propre tels que soit équivalente à .
Accepted:
Published online:
Evgeny Abakumov 1; Evgueni Doubtsov 2, 3
@article{CRMATH_2016__354_5_465_0, author = {Evgeny Abakumov and Evgueni Doubtsov}, title = {Growth of proper holomorphic maps and tropical power series}, journal = {Comptes Rendus. Math\'ematique}, pages = {465--469}, publisher = {Elsevier}, volume = {354}, number = {5}, year = {2016}, doi = {10.1016/j.crma.2016.03.001}, language = {en}, }
Evgeny Abakumov; Evgueni Doubtsov. Growth of proper holomorphic maps and tropical power series. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 465-469. doi : 10.1016/j.crma.2016.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.001/
[1] Reverse estimates in growth spaces, Math. Z., Volume 271 (2012) no. 1–2, pp. 399-413
[2] Moduli of holomorphic functions and logarithmically convex radial weights, Bull. Lond. Math. Soc., Volume 47 (2015) no. 3, pp. 519-532
[3] Explicit imbedding of the (punctured) disc into , Comment. Math. Helv., Volume 52 (1977) no. 4, pp. 539-544
[4] Associated weights and spaces of holomorphic functions, Stud. Math., Volume 127 (1998) no. 2, pp. 137-168
[5] Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Can. Math. Bull., Volume 42 (1999) no. 2, pp. 139-148
[6] Harmonic approximation by finite sums of moduli, J. Math. Anal. Appl., Volume 430 (2015) no. 2, pp. 685-694
[7] Embeddings of Stein manifolds of dimension n into the affine space of dimension , Ann. Math. (2), Volume 136 (1992) no. 1, pp. 123-135
[8] On the maximum modulus of entire functions, Acta Math. Acad. Sci. Hung., Volume 7 (1956), pp. 305-317
[9] Embeddings of infinitely connected planar domains into , Anal. PDE, Volume 6 (2013) no. 2, pp. 499-514
[10] On growth of holomorphic embeddings into , Proc. R. Soc. Edinb., Sect. A, Volume 132 (2002) no. 4, pp. 879-889
[11] Holomorphic embeddings of planar domains into , Math. Ann., Volume 303 (1995) no. 4, pp. 579-597
[12] Tropical Algebraic Geometry, Oberwolfach Seminars, vol. 35, Birkhäuser Verlag, Basel, Switzerland, 2009
[13] Math. Rev., 38 (1969) (As announced in)
[14] Croissance des fonctions plurisousharmoniques en dimension infinie, Ann. Inst. Fourier (Grenoble), Volume 34 (1984) no. 1, pp. 155-183
[15] Questions inspired by Mikael Passare's mathematics, Afr. Math., Volume 25 (2014) no. 2, pp. 271-288
[16] Sur l'approximation pondérée par des polynômes et par des sommes d'exponentielles imaginaires, Ann. Sci. Éc. Norm. Super. (3), Volume 81 (1964), pp. 387-408
[17] Imbedding annuli in , J. Anal. Math., Volume 26 (1973), pp. 187-215
[18] Strong Asymptotics for Extremal Errors and Polynomials Associated with Erdős-Type Weights, Pitman Research Notes in Mathematics Series, vol. 202, Longman Scientific & Technical, Harlow, 1989
[19] (American Mathematical Society Translations, Ser. 2), Volume vol. 10, American Mathematical Society, Providence, RI, USA (1958), pp. 59-106
[20] On the approximation of positive functions by power series. II, J. Approx. Theory, Volume 92 (1998) no. 3, pp. 486-501
[21] Plongements du disque dans , Séminaire Pierre-Lelong (Analyse), Année 1970–1971, Lecture Notes in Math., vol. 275, Springer, Berlin, 1972, pp. 119-130
Cited by Sources:
Comments - Politique