[Local asymptotic normality of Hilbertian autoregressive processes]
We give a Local Asymptotic Normality (LAN condition) and a Uniform Local Asymptotic Normality (ULAN condition) for a class of Hilbert space valued autoregressive processes when the correlation operator depends upon an unknown one-dimensional parameter. We then derive a Hajek minimax bound, the consistency, the asymptotic normality, and the efficiency of the conditional maximum likelihood and Bayes estimators yielding their optimality.
Nous montrons la normalité asymptotique locale (condition LAN) et la normalité asymptotique locale uniforme (condition ULAN) pour une classe de processus autorégressifs hilbertiens où l'opérateur d'autocorrélation dépend d'un paramètre réel inconnu. Nous obtenons une borne minimax de Hajek pour tout estimateur du paramètre, la convergence, la normalité asymptotique et l'efficacité des estimateurs du maximum de vraisemblance conditionnel et de Bayes.
Accepted:
Published online:
Nesrine Kara-Terki 1; Tahar Mourid 1
@article{CRMATH_2016__354_6_634_0, author = {Nesrine Kara-Terki and Tahar Mourid}, title = {Normalit\'e asymptotique locale de processus autor\'egressifs hilbertiens}, journal = {Comptes Rendus. Math\'ematique}, pages = {634--638}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.03.006}, language = {fr}, }
Nesrine Kara-Terki; Tahar Mourid. Normalité asymptotique locale de processus autorégressifs hilbertiens. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 634-638. doi : 10.1016/j.crma.2016.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.006/
[1] Linear Processes in Function Spaces, Springer, New York, 2000
[2] Asymptotic optimal inference for a class of nonlinear time series models, Stoch. Process. Appl., Volume 46 (1993), pp. 91-113
[3] Statistical Estimation. Asymptotic Theory, Springer, New York, 1981
[4] Local asymptotic normality for autoregression with infinite order, J. Stat. Plan. Inference, Volume 26 (1990), pp. 185-219
[5] Asymptotics in Statistics, Springer, 2000
[6] Contribution à la statistique des processus autorégressifs à temps continu, université Paris-6, 1995 (thèse de doctorat ès sciences)
[7] Asymptotic distribution of the likelihood function in the independent not identically distributed case, Ann. Stat., Volume 1 (1973), pp. 454-471
[8] Asymptotic distribution of the log-likelihood function for stochastic processes, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 47 (1979), pp. 31-46
[9] The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend, J. Multivar. Anal., Volume 16 (1985), pp. 54-70
Cited by Sources:
Comments - Policy