[Note sur les quantiles conditionnels pour variables fonctionnelles ergodiques]
Dans cette Note, nous étudions l'estimateur à noyau récursif des quantiles conditionnels d'une variable réponse réelle Y sachant une variable aléatoire fonctionnelle X. Nous établissons la convergence presque complète de cet estimateur estimation lorsque les observations ont une corrélation ergodique.
In this Note, we study the recursive kernel estimator of the conditional quantile of a scalar response variable Y given a random variable (rv) X taking values in a semi-metric space. We establish the almost complete consistency of this estimate when the observations are sampled from a functional ergodic process.
Accepté le :
Publié le :
Fatima Benziadi 1 ; Ali Laksaci 2 ; Fethallah Tebboune 3
@article{CRMATH_2016__354_6_628_0, author = {Fatima Benziadi and Ali Laksaci and Fethallah Tebboune}, title = {Note on conditional quantiles for functional ergodic data}, journal = {Comptes Rendus. Math\'ematique}, pages = {628--633}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.03.005}, language = {en}, }
TY - JOUR AU - Fatima Benziadi AU - Ali Laksaci AU - Fethallah Tebboune TI - Note on conditional quantiles for functional ergodic data JO - Comptes Rendus. Mathématique PY - 2016 SP - 628 EP - 633 VL - 354 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2016.03.005 LA - en ID - CRMATH_2016__354_6_628_0 ER -
Fatima Benziadi; Ali Laksaci; Fethallah Tebboune. Note on conditional quantiles for functional ergodic data. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 628-633. doi : 10.1016/j.crma.2016.03.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.005/
[1] Recursive estimation of nonparametric regression with functional covariate, Comput. Stat. Data Anal., Volume 69 (2014), pp. 154-172
[2] Gaussian Measures, Math. Surv. Monogr., vol. 62, American Mathematical Society, 1999
[3] Linear Processes in Function Spaces: Theory and Applications, Lecture Notes in Statistics, vol. 149, Springer, 2000
[4] Nonparametric quantile regression estimation for functional dependent data, Commun. Stat., Theory Methods, Volume 41 (2011), pp. 1254-1268
[5]
[6] Nonparametric estimation of a regression function and its derivatives under an ergodic hypothesis, J. Nonparametr. Statist., Volume 6 (1996), pp. 367-382
[7] Asymptotic results of a nonparametric conditional quantile estimator for functional time series, Commun. Stat., Theory Methods, Volume 37 (2008), pp. 2735-2759
[8] Nonparametric Functional Data Analysis. Theory and Practice, Springer-Verlag, New York, 2006
[9] Nonparametric M-regression for functional ergodic data, Stat. Probab. Lett., Volume 83 (2013), pp. 902-908
[10] A robust nonparametric estimation of the autoregression function under an ergodic hypothesis, Can. J. Stat., Volume 28 (2000), pp. 817-828
[11] Nonparametric kernel regression estimate for functional stationary ergodic data: asymptotic properties, J. Multivar. Anal., Volume 101 (2010), pp. 2266-2281
[12] Rates of strong consistencies of the regression function estimator for functional stationary ergodic data, J. Stat. Plan. Inference, Volume 141 (2011), pp. 359-372
[13]
[14] Asymptotic results for an
[15] Functional Data Analysis, Springer, New York, 2005
[16] Asymptotic normality of the recursive kernel regression estimate under dependence conditions, Ann. Stat., Volume 20 (1992), pp. 98-120
[17] Non-parametric estimation of conditional quantiles, Stat. Probab. Lett., Volume 7 (1989), pp. 407-412
[18] Consistent nonparametric regression. Discussion, Ann. Stat., Volume 5 (1977), pp. 595-645
- Asymptotic properties of the conditional hazard function estimate by the local linear method for functional ergodic data, Journal of Applied Mathematics Informatics, Volume 41 (2023) no. 6, pp. 1341-1364 | DOI:10.14317/jami.2023.1341 | Zbl:1549.62043
Cité par 1 document. Sources : zbMATH
Commentaires - Politique