[Note sur les quantiles conditionnels pour variables fonctionnelles ergodiques]
In this Note, we study the recursive kernel estimator of the conditional quantile of a scalar response variable Y given a random variable (rv) X taking values in a semi-metric space. We establish the almost complete consistency of this estimate when the observations are sampled from a functional ergodic process.
Dans cette Note, nous étudions l'estimateur à noyau récursif des quantiles conditionnels d'une variable réponse réelle Y sachant une variable aléatoire fonctionnelle X. Nous établissons la convergence presque complète de cet estimateur estimation lorsque les observations ont une corrélation ergodique.
Accepté le :
Publié le :
Fatima Benziadi 1 ; Ali Laksaci 2 ; Fethallah Tebboune 3
@article{CRMATH_2016__354_6_628_0, author = {Fatima Benziadi and Ali Laksaci and Fethallah Tebboune}, title = {Note on conditional quantiles for functional ergodic data}, journal = {Comptes Rendus. Math\'ematique}, pages = {628--633}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.03.005}, language = {en}, }
TY - JOUR AU - Fatima Benziadi AU - Ali Laksaci AU - Fethallah Tebboune TI - Note on conditional quantiles for functional ergodic data JO - Comptes Rendus. Mathématique PY - 2016 SP - 628 EP - 633 VL - 354 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2016.03.005 LA - en ID - CRMATH_2016__354_6_628_0 ER -
Fatima Benziadi; Ali Laksaci; Fethallah Tebboune. Note on conditional quantiles for functional ergodic data. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 628-633. doi : 10.1016/j.crma.2016.03.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.005/
[1] Recursive estimation of nonparametric regression with functional covariate, Comput. Stat. Data Anal., Volume 69 (2014), pp. 154-172
[2] Gaussian Measures, Math. Surv. Monogr., vol. 62, American Mathematical Society, 1999
[3] Linear Processes in Function Spaces: Theory and Applications, Lecture Notes in Statistics, vol. 149, Springer, 2000
[4] Nonparametric quantile regression estimation for functional dependent data, Commun. Stat., Theory Methods, Volume 41 (2011), pp. 1254-1268
[5]
[6] Nonparametric estimation of a regression function and its derivatives under an ergodic hypothesis, J. Nonparametr. Statist., Volume 6 (1996), pp. 367-382
[7] Asymptotic results of a nonparametric conditional quantile estimator for functional time series, Commun. Stat., Theory Methods, Volume 37 (2008), pp. 2735-2759
[8] Nonparametric Functional Data Analysis. Theory and Practice, Springer-Verlag, New York, 2006
[9] Nonparametric M-regression for functional ergodic data, Stat. Probab. Lett., Volume 83 (2013), pp. 902-908
[10] A robust nonparametric estimation of the autoregression function under an ergodic hypothesis, Can. J. Stat., Volume 28 (2000), pp. 817-828
[11] Nonparametric kernel regression estimate for functional stationary ergodic data: asymptotic properties, J. Multivar. Anal., Volume 101 (2010), pp. 2266-2281
[12] Rates of strong consistencies of the regression function estimator for functional stationary ergodic data, J. Stat. Plan. Inference, Volume 141 (2011), pp. 359-372
[13]
[14] Asymptotic results for an
[15] Functional Data Analysis, Springer, New York, 2005
[16] Asymptotic normality of the recursive kernel regression estimate under dependence conditions, Ann. Stat., Volume 20 (1992), pp. 98-120
[17] Non-parametric estimation of conditional quantiles, Stat. Probab. Lett., Volume 7 (1989), pp. 407-412
[18] Consistent nonparametric regression. Discussion, Ann. Stat., Volume 5 (1977), pp. 595-645
Cité par Sources :
Commentaires - Politique