Branching can be observed at the austenite–martensite interface of martensitic phase transformations. For a model problem, Kohn and Müller studied a branching pattern with optimal scaling of the energy with respect to its parameters. Here, we present finite element simulations that suggest a topologically different class of branching patterns and derive a novel, low-dimensional family of patterns. After a geometric optimization within this family, the resulting pattern bears a striking resemblance to our simulation. The novel microstructure admits the same scaling exponents, but results in a significantly lower upper energy bound.
Un motif de ramification est observé à l'interface austénite–martensite au cours de la transformation de phase martensitique. Kohn et Müller étudient un motif de ramification qui reflète les exposants optimaux de l'énergie en fonction de ses paramètres. Nous présentons ici des simulations par la méthode des éléments finis qui suggèrent une classe de ramifications ayant une topologie différente, et déduisons une nouvelle famille de ramifications, de faibles dimensions. Après optimisation géométrique au sein de cette famille, le motif résultant présente une ressemblance remarquable avec les résultats de notre simulation. Le nouveau motif possède les mêmes exposants d'échelle optimaux, mais fournit une constante significativement inférieure dans le contrôle de l'énergie.
Accepted:
Published online:
Patrick Dondl 1; Behrend Heeren 2; Martin Rumpf 2
@article{CRMATH_2016__354_6_639_0, author = {Patrick Dondl and Behrend Heeren and Martin Rumpf}, title = {Optimization of the branching pattern in coherent phase transitions}, journal = {Comptes Rendus. Math\'ematique}, pages = {639--644}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.03.013}, language = {en}, }
TY - JOUR AU - Patrick Dondl AU - Behrend Heeren AU - Martin Rumpf TI - Optimization of the branching pattern in coherent phase transitions JO - Comptes Rendus. Mathématique PY - 2016 SP - 639 EP - 644 VL - 354 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2016.03.013 LA - en ID - CRMATH_2016__354_6_639_0 ER -
Patrick Dondl; Behrend Heeren; Martin Rumpf. Optimization of the branching pattern in coherent phase transitions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 639-644. doi : 10.1016/j.crma.2016.03.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.013/
[1] Fine phase mixtures as minimizers of the energy, Arch. Ration. Mech. Anal., Volume 100 (1987), pp. 13-52
[2] Subdivision shells with exact boundary control and non-manifold geometry, Int. J. Numer. Methods Eng., Volume 88 (2011) no. 9, pp. 897-923
[3] Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, Int. J. Numer. Methods Eng., Volume 47 (2000) no. 12, pp. 2039-2072
[4] Branched microstructures: scaling and asymptotic self-similarity, Commun. Pure Appl. Math., Volume 53 (2000), pp. 1448-1474
[5] Computational analysis of martensitic thin films using subdivision surfaces, Int. J. Numer. Methods Eng., Volume 72 (2007) no. 1, pp. 72-94
[6] Unconditionally gradient stable time marching the Cahn–Hilliard equation, Mater. Res. Soc. Symp. Proc., Volume 529 (1998), pp. 39-46
[7] Theory of Structural Transformations in Solids, Wiley, New York, 1983
[8] Branching of twin near an austenite–twinned-martensite interface, Philos. Mag. A, Volume 66 (1992) no. 5, pp. 697-715
[9] Surface energy and microstructure in coherent phase transitions, Commun. Pure Appl. Math., Volume 47 (1994) no. 4, pp. 405-435
[10] Numerical justification of branched laminated microstructure with surface energy, SIAM J. Sci. Comput., Volume 24 (2003) no. 3, pp. 1054-1075
[11] Analysis, modelling and simulation of shape memory alloys, The Queen's College, University of Oxford, Oxford, UK, 2009 (PhD thesis)
[12] The domain structure of crystals formed in the solid phase, Sov. Phys., Solid State, Volume 10 (1969) no. 12, pp. 2870-2876
[13] Energy minimization and the formation of microstructure in dynamic anti-plane shear, Arch. Ration. Mech. Anal., Volume 121 (1992) no. 1, pp. 37-85
Cited by Sources:
Comments - Policy