Given a foliation on a manifold with suitable curvature form, the Euler class of its tangent bundle is explicitly computed whenever it admits an umbilic leaf. If the leaf is compact, then topological obstructions arise by considering foliated manifolds with certain trivial cohomology group. The results fully generalize to distributions tangent to at least one compact umbilic submanifold.
Étant donné une variété feuilletée munie de formes de courbure convenables, nous calculons explicitement sa classe d'Euler dans le cas totalement ombilical. Si la feuille est compacte, nous obtenons des obstructions topologiques dans le cas où certains groupes d'homologie de la variété feuilletée sont triviaux. Les résultats se généralisent aux distributions tangentes à une sous-variété ombilicale.
Accepted:
Published online:
Icaro Gonçalves 1; Fabiano Brito 2
@article{CRMATH_2016__354_6_614_0, author = {Icaro Gon\c{c}alves and Fabiano Brito}, title = {The {Euler} class of an umbilic foliation}, journal = {Comptes Rendus. Math\'ematique}, pages = {614--618}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.03.014}, language = {en}, }
Icaro Gonçalves; Fabiano Brito. The Euler class of an umbilic foliation. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 614-618. doi : 10.1016/j.crma.2016.03.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.014/
[1] A generalization of Clairaut's theorem and umbilic foliations, Nikonhai Math. J., Volume 2 (1991), pp. 139-153
[2] Einstein Manifolds, Springer-Verlag, Berlin, 1987
[3] A remark on minimal foliations of codimension two, Tôhoku Math. J., Volume 36 (1984), pp. 341-350
[4] Totally geodesic foliations with integrable normal bundle, Bol. Soc. Bras. Mat., Volume 17 (1986), pp. 41-44
[5] Umbilical foliations and transversely holomorphic flows, J. Differ. Geom., Volume 41 (1995), pp. 1-19
[6] Totally umbilic Riemannian foliations, Mich. Math. J., Volume 37 (1990), pp. 145-159
[7] Foliations II, AMS Graduate Studies in Mathematics, vol. 60, Amer. Math. Soc., Providence, RI, USA, 2003
[8] On curvature and characteristic classes of a Riemann manifold, Abh. Math. Semin. Univ. Hamb., Volume 20 (1955), pp. 117-126
[9] A survey of foliations and operator algebras (R.V. Kadison, ed.), Operator Algebras and Applications, Proc. Symp. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, USA, 1982, pp. 521-628
[10] Great circle fibrations on the three-sphere, Duke Math. J., Volume 50 (1983), pp. 107-132
[11] Metric Foliations and Curvature, Birkhauser, Boston, 2008
[12] A topological obstruction to the geodesibility of a foliation of odd dimension, Geom. Dedic., Volume 11 (1981), pp. 347-357
[13] Foundations in Differential Geometry II, Wiley–Interscience, New York, 1969
[14] Conformal geometry of foliations, Geom. Dedic., Volume 132 (2008), pp. 135-178
[15] Riemannian Geometry, Springer-Verlag, New York, 1997
[16] Foliations on Riemannian Manifolds and Submanifolds, Birkhäuser, Basel, 1998
[17] Sectional curvatures and characteristic classes, Ann. Math. (2), Volume 80 (1964), pp. 429-443
[18] Foliations on Riemannian Manifolds, Universitext, Springer-Verlag, New York, 1988
[19] Umbilic foliations and curvature, Ill. J. Math., Volume 41 (1997), pp. 122-128
Cited by Sources:
Comments - Policy