Comptes Rendus
Geometry/Differential topology
The Euler class of an umbilic foliation
Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 614-618.

Given a foliation on a manifold with suitable curvature form, the Euler class of its tangent bundle is explicitly computed whenever it admits an umbilic leaf. If the leaf is compact, then topological obstructions arise by considering foliated manifolds with certain trivial cohomology group. The results fully generalize to distributions tangent to at least one compact umbilic submanifold.

Étant donné une variété feuilletée munie de formes de courbure convenables, nous calculons explicitement sa classe d'Euler dans le cas totalement ombilical. Si la feuille est compacte, nous obtenons des obstructions topologiques dans le cas où certains groupes d'homologie de la variété feuilletée sont triviaux. Les résultats se généralisent aux distributions tangentes à une sous-variété ombilicale.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.03.014

Icaro Gonçalves 1; Fabiano Brito 2

1 Dpto. de Matemática, Instituto de Matemática e Estatística, Universidade de Sāo Paulo, R. do Matāo 1010, Sāo Paulo, SP 05508-900, Brazil
2 Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09.210-170 Santo André, Brazil
@article{CRMATH_2016__354_6_614_0,
     author = {Icaro Gon\c{c}alves and Fabiano Brito},
     title = {The {Euler} class of an umbilic foliation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {614--618},
     publisher = {Elsevier},
     volume = {354},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crma.2016.03.014},
     language = {en},
}
TY  - JOUR
AU  - Icaro Gonçalves
AU  - Fabiano Brito
TI  - The Euler class of an umbilic foliation
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 614
EP  - 618
VL  - 354
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2016.03.014
LA  - en
ID  - CRMATH_2016__354_6_614_0
ER  - 
%0 Journal Article
%A Icaro Gonçalves
%A Fabiano Brito
%T The Euler class of an umbilic foliation
%J Comptes Rendus. Mathématique
%D 2016
%P 614-618
%V 354
%N 6
%I Elsevier
%R 10.1016/j.crma.2016.03.014
%G en
%F CRMATH_2016__354_6_614_0
Icaro Gonçalves; Fabiano Brito. The Euler class of an umbilic foliation. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 614-618. doi : 10.1016/j.crma.2016.03.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.014/

[1] K. Aso; S. Yorozu A generalization of Clairaut's theorem and umbilic foliations, Nikonhai Math. J., Volume 2 (1991), pp. 139-153

[2] A. Besse Einstein Manifolds, Springer-Verlag, Berlin, 1987

[3] F. Brito A remark on minimal foliations of codimension two, Tôhoku Math. J., Volume 36 (1984), pp. 341-350

[4] F. Brito; P. Walczak Totally geodesic foliations with integrable normal bundle, Bol. Soc. Bras. Mat., Volume 17 (1986), pp. 41-44

[5] M. Brunella; É. Ghys Umbilical foliations and transversely holomorphic flows, J. Differ. Geom., Volume 41 (1995), pp. 1-19

[6] G. Cairns Totally umbilic Riemannian foliations, Mich. Math. J., Volume 37 (1990), pp. 145-159

[7] A. Candel; L. Conlon Foliations II, AMS Graduate Studies in Mathematics, vol. 60, Amer. Math. Soc., Providence, RI, USA, 2003

[8] S.S. Chern On curvature and characteristic classes of a Riemann manifold, Abh. Math. Semin. Univ. Hamb., Volume 20 (1955), pp. 117-126

[9] A. Connes A survey of foliations and operator algebras (R.V. Kadison, ed.), Operator Algebras and Applications, Proc. Symp. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, USA, 1982, pp. 521-628

[10] H. Gluck; F. Warner Great circle fibrations on the three-sphere, Duke Math. J., Volume 50 (1983), pp. 107-132

[11] D. Gromoll; G. Walschap Metric Foliations and Curvature, Birkhauser, Boston, 2008

[12] D.L. Johnson; A.M. Naveira A topological obstruction to the geodesibility of a foliation of odd dimension, Geom. Dedic., Volume 11 (1981), pp. 347-357

[13] S. Kobayashi; K. Nomizu Foundations in Differential Geometry II, Wiley–Interscience, New York, 1969

[14] R. Langevin; P. Walczak Conformal geometry of foliations, Geom. Dedic., Volume 132 (2008), pp. 135-178

[15] P. Petersen Riemannian Geometry, Springer-Verlag, New York, 1997

[16] V. Rovenski Foliations on Riemannian Manifolds and Submanifolds, Birkhäuser, Basel, 1998

[17] J.A. Thorpe Sectional curvatures and characteristic classes, Ann. Math. (2), Volume 80 (1964), pp. 429-443

[18] Ph. Tondeur Foliations on Riemannian Manifolds, Universitext, Springer-Verlag, New York, 1988

[19] G. Walschap Umbilic foliations and curvature, Ill. J. Math., Volume 41 (1997), pp. 122-128

Cited by Sources:

Comments - Policy