In his book Differential Geometry of Spray and Finsler spaces, page 177, Zhongmin Shen asks “whether or not there always exist non-trivial Funk functions on a spray space”. In this note, we will prove that the answer is negative for the geodesic spray of a Finslerian function of non-vanishing scalar flag curvature.
Dans son livre Differential Geometry of Spray and Finsler spaces, page 177, Zhongmin Shen demande s'il existe toujours une fonction de Funk non triviale sur un espace de spray. Dans la présente note, nous prouvons que la réponse est négative pour le spray géodésique d'une fonction finslérienne de courbure scalaire non nulle.
Accepted:
Published online:
Ioan Bucataru 1; Zoltán Muzsnay 2
@article{CRMATH_2016__354_6_619_0, author = {Ioan Bucataru and Zolt\'an Muzsnay}, title = {Non-existence of {Funk} functions for {Finsler} spaces of non-vanishing scalar flag curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {619--622}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.04.001}, language = {en}, }
TY - JOUR AU - Ioan Bucataru AU - Zoltán Muzsnay TI - Non-existence of Funk functions for Finsler spaces of non-vanishing scalar flag curvature JO - Comptes Rendus. Mathématique PY - 2016 SP - 619 EP - 622 VL - 354 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2016.04.001 LA - en ID - CRMATH_2016__354_6_619_0 ER -
Ioan Bucataru; Zoltán Muzsnay. Non-existence of Funk functions for Finsler spaces of non-vanishing scalar flag curvature. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 619-622. doi : 10.1016/j.crma.2016.04.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.001/
[1] Funk functions and projective deformations of sprays and Finsler spaces of scalar flag curvature, J. Geom. Anal. (2016) | DOI
[2] Projective and Finsler metrizability: parametrization rigidity of geodesics, Int. J. Math., Volume 23 (2012) no. 6 (15 pages)
[3] Variational Principles for Second-Order Differential Equations, World Scientific, 2000
[4] Differential Geometry of Spray and Finsler Spaces, Springer, 2001
[5] A setting for spray and Finsler geometry (P.L. Antonelli, ed.), Handbook of Finsler Geometry, vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003, pp. 1183-1426
Cited by Sources:
Comments - Policy