Let M be a random symmetric real p-matrix of Wishart distribution with k degrees of freedom and scale parameter Σ. The distribution of M can usually be characterized by the distribution of , for any Σ-orthogonal basis of . We propose to weaken this characterization, showing that, when , it is sufficient to know the distribution of .
Soit M une p-matrice aléatoire réelle symétrique de loi de Wishart à k degrés de liberté et de paramètre d'échelle Σ. On peut caractériser la loi de M par la loi de , pour toute base Σ-orthogonale de . Nous proposons une caractérisation plus faible de la loi de M, montrant que, si , il suffit de connaître la loi de .
Accepted:
Published online:
Gabriel Fraisse 1; Sylvie Viguier-Pla 1, 2
@article{CRMATH_2016__354_6_623_0, author = {Gabriel Fraisse and Sylvie Viguier-Pla}, title = {A weak characterization of real {Wishart} matrices by quadratic forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {623--627}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.03.011}, language = {en}, }
Gabriel Fraisse; Sylvie Viguier-Pla. A weak characterization of real Wishart matrices by quadratic forms. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 623-627. doi : 10.1016/j.crma.2016.03.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.011/
[1] Singular inverse Wishart distribution and its application to portfolio theory, J. Multivar. Anal., Volume 143 (2016), pp. 314-326
[2] Multivariate Statistics, Wiley, New York, 1983
[3] The hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution, J. Theor. Probab., Volume 18 (2005) no. 1, pp. 1-42
[4] The Haar Integral, D. Van Nostrand Company, Inc., Princeton, NJ, Toronto, London, 1965
[5] Probabilités, Analyse des données et statistique, Technip, Paris, 2006
[6] On the degrees of freedom in MCMC-based Wishart models for time series data, Stat. Probab. Lett., Volume 98 (2015), pp. 59-64
Cited by Sources:
Comments - Policy