[Sur les espaces finsleriennes compacts à courbure positive constante]
Un espace de Finsler de dimension n (), simplement connexe, compact, non-borné et à courbure sectionnelle positive constante est conformément homéomorphe à une n-sphère dʼun espace euclidien .
An n-dimensional () simply connected, compact without boundary Finsler space of positive constant sectional curvature is conformally homeomorphic to an n-sphere in the Euclidean space .
Accepté le :
Publié le :
Behroz Bidabad 1
@article{CRMATH_2011__349_21-22_1191_0, author = {Behroz Bidabad}, title = {On compact {Finsler} spaces of positive constant curvature}, journal = {Comptes Rendus. Math\'ematique}, pages = {1191--1194}, publisher = {Elsevier}, volume = {349}, number = {21-22}, year = {2011}, doi = {10.1016/j.crma.2011.10.014}, language = {en}, }
Behroz Bidabad. On compact Finsler spaces of positive constant curvature. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1191-1194. doi : 10.1016/j.crma.2011.10.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.10.014/
[1] Sur les espaces de Finsler à courbures sectionnelles constantes, Acad. Roy. Bull. Cl. Sci. (5), Volume 74 (1988), pp. 281-322
[2] Classification of complete Finsler manifolds through a second order differential equation, Differential Geom. Appl., Volume 26 (2008), pp. 434-444
[3] Riemann–Finsler Geometry, Springer-Verlag, 2000
[4] Complete Finsler manifolds and adapted coordinates, Balkan J. Geom. Appl., Volume 14 (2009) no. 1, pp. 21-29
[5] B. Bidabad, Z. Shen, Circle-preserving transformations on Finsler spaces, in press.
[6] Séminaire Ehresmann, Topologie et géometrie différentielle, Volume 6 (1964)
[7] Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001
[8] Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc., Volume 117 (1965), pp. 251-275
Cité par Sources :
Commentaires - Politique