Let G be a locally compact amenable group, and be the Fourier and the Fourier–Stieltjes algebra of G, respectively. For a given , let . The main result of this paper particularly states that if and is countable (in particular, if is compact and scattered), then
Soit G un groupe compact moyennable et soient et l'algèbre de Fourier et l'algèbre de Fourier–Stieltjes de G, respectivement. Pour un donné, posons . Le résultat principal de cet article établit que, si et si est dénombrable (en particulier si est compacte et éparpillé), alors
Accepted:
Published online:
Heybetkulu Mustafayev 1
@article{CRMATH_2016__354_6_577_0, author = {Heybetkulu Mustafayev}, title = {Distance formulas in group algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {577--582}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.04.002}, language = {en}, }
Heybetkulu Mustafayev. Distance formulas in group algebras. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 577-582. doi : 10.1016/j.crma.2016.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.002/
[1] Some results on the Fourier–Stieltjes algebra of a locally compact group, Comment. Math. Helv., Volume 45 (1970), pp. 219-228
[2] On iterates of convolutions, Proc. Amer. Math. Soc., Volume 47 (1975), pp. 368-370
[3] Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal., Volume 203 (2003), pp. 286-304
[4] On projections of onto translation-invariant subspaces, Proc. Lond. Math. Soc., Volume 19 (1969), pp. 69-88
[5] Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1979
[6] On some properties of the Banach algebras for locally compact groups, Proc. Amer. Math. Soc., Volume 95 (1985), pp. 375-381
[7] Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble), Volume 23 (1973), pp. 91-123
[8] Series de Fourier Absolument Convergentes, Mir, Moscow, 1976 (in Russian)
[9] Multipliers of commutative Banach algebras, power boundedness and Fourier–Stieltjes algebras, J. Lond. Math. Soc., Volume 81 (2010), pp. 255-275
[10] An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971
[11] Banach Algebras, Marcel Dekker, New York, 1973
[12] An Introduction to the Local Spectral Theory, Clarendon Press, Oxford, 2000
[13] Measures with bounded convolution powers, Trans. Amer. Math. Soc., Volume 151 (1970), pp. 405-431
[14] The Asymptotic Behaviour of Semigroups of Linear Operators, Oper. Theory, Adv. Appl., vol. 88, Birkhäuser, Basel, Boston, Berlin, 1996
Cited by Sources:
Comments - Policy