[Formules de distance dans les groupes algébriques]
Soit G un groupe compact moyennable et soient
Let G be a locally compact amenable group,
Accepté le :
Publié le :
Heybetkulu Mustafayev 1
@article{CRMATH_2016__354_6_577_0, author = {Heybetkulu Mustafayev}, title = {Distance formulas in group algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {577--582}, publisher = {Elsevier}, volume = {354}, number = {6}, year = {2016}, doi = {10.1016/j.crma.2016.04.002}, language = {en}, }
Heybetkulu Mustafayev. Distance formulas in group algebras. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 577-582. doi : 10.1016/j.crma.2016.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.002/
[1] Some results on the Fourier–Stieltjes algebra of a locally compact group, Comment. Math. Helv., Volume 45 (1970), pp. 219-228
[2] On iterates of convolutions, Proc. Amer. Math. Soc., Volume 47 (1975), pp. 368-370
[3] Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal., Volume 203 (2003), pp. 286-304
[4] On projections of
[5] Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1979
[6] On some properties of the Banach algebras
[7] Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble), Volume 23 (1973), pp. 91-123
[8] Series de Fourier Absolument Convergentes, Mir, Moscow, 1976 (in Russian)
[9] Multipliers of commutative Banach algebras, power boundedness and Fourier–Stieltjes algebras, J. Lond. Math. Soc., Volume 81 (2010), pp. 255-275
[10] An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971
[11] Banach Algebras, Marcel Dekker, New York, 1973
[12] An Introduction to the Local Spectral Theory, Clarendon Press, Oxford, 2000
[13] Measures with bounded convolution powers, Trans. Amer. Math. Soc., Volume 151 (1970), pp. 405-431
[14] The Asymptotic Behaviour of Semigroups of Linear Operators, Oper. Theory, Adv. Appl., vol. 88, Birkhäuser, Basel, Boston, Berlin, 1996
- Convergence of iterates of convolution operators in L spaces, Bulletin des Sciences Mathématiques, Volume 152 (2019), p. 61 | DOI:10.1016/j.bulsci.2019.01.005
- Mean Ergodic Theorems for Multipliers on Banach Algebras, Journal of Fourier Analysis and Applications, Volume 25 (2019) no. 2, p. 393 | DOI:10.1007/s00041-017-9587-x
- Some convergence theorems for multipliers on commutative Banach algebras, Acta Scientiarum Mathematicarum, Volume 84 (2018) no. 3-4, p. 673 | DOI:10.14232/actasm-017-291-5
- SOME CONVERGENCE THEOREMS IN FOURIER ALGEBRAS, Bulletin of the Australian Mathematical Society, Volume 96 (2017) no. 3, p. 487 | DOI:10.1017/s0004972717000351
Cité par 4 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier