Comptes Rendus
Mathematical analysis/Functional analysis
Distance formulas in group algebras
Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 577-582.

Let G be a locally compact amenable group, A(G) and B(G) be the Fourier and the Fourier–Stieltjes algebra of G, respectively. For a given uB(G), let Eu:={gG:|u(g)|=1}. The main result of this paper particularly states that if uB(G)1 and u(Eu) is countable (in particular, if Eu is compact and scattered), then

limnunvA(G)=dist(v,IEu), vA(G),
where IEu={vA(G):v(g)=0, gEu}.

Soit G un groupe compact moyennable et soient A(G) et B(G) l'algèbre de Fourier et l'algèbre de Fourier–Stieltjes de G, respectivement. Pour un uB(G) donné, posons Eu:={gG:|u(g)|=1}. Le résultat principal de cet article établit que, si uB(G)1 et si u(Eu) est dénombrable (en particulier si Eu est compacte et éparpillé), alors

limnunvA(G)=dist(v,IEu), vA(G),
IEu={vA(G):v(g)=0, gEu}.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.04.002

Heybetkulu Mustafayev 1

1 Yuzuncu Yil University, Faculty of Sciences, Department of Mathematics, 65080, Van, Turkey
@article{CRMATH_2016__354_6_577_0,
     author = {Heybetkulu Mustafayev},
     title = {Distance formulas in group algebras},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {577--582},
     publisher = {Elsevier},
     volume = {354},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crma.2016.04.002},
     language = {en},
}
TY  - JOUR
AU  - Heybetkulu Mustafayev
TI  - Distance formulas in group algebras
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 577
EP  - 582
VL  - 354
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2016.04.002
LA  - en
ID  - CRMATH_2016__354_6_577_0
ER  - 
%0 Journal Article
%A Heybetkulu Mustafayev
%T Distance formulas in group algebras
%J Comptes Rendus. Mathématique
%D 2016
%P 577-582
%V 354
%N 6
%I Elsevier
%R 10.1016/j.crma.2016.04.002
%G en
%F CRMATH_2016__354_6_577_0
Heybetkulu Mustafayev. Distance formulas in group algebras. Comptes Rendus. Mathématique, Volume 354 (2016) no. 6, pp. 577-582. doi : 10.1016/j.crma.2016.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.002/

[1] A. Derighetti Some results on the Fourier–Stieltjes algebra of a locally compact group, Comment. Math. Helv., Volume 45 (1970), pp. 219-228

[2] S.R. Foguel On iterates of convolutions, Proc. Amer. Math. Soc., Volume 47 (1975), pp. 368-370

[3] B. Forrest; E. Kaniuth; A.T. Lau; N. Spronk Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal., Volume 203 (2003), pp. 286-304

[4] J.E. Gilbert On projections of L(G) onto translation-invariant subspaces, Proc. Lond. Math. Soc., Volume 19 (1969), pp. 69-88

[5] C.C. Graham; O.C. McGehee Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1979

[6] E.E. Granirer On some properties of the Banach algebras Ap(G) for locally compact groups, Proc. Amer. Math. Soc., Volume 95 (1985), pp. 375-381

[7] C. Herz Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble), Volume 23 (1973), pp. 91-123

[8] J.P. Kahane Series de Fourier Absolument Convergentes, Mir, Moscow, 1976 (in Russian)

[9] E. Kaniuth; A. Lau; A. Ülger Multipliers of commutative Banach algebras, power boundedness and Fourier–Stieltjes algebras, J. Lond. Math. Soc., Volume 81 (2010), pp. 255-275

[10] R. Larsen An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971

[11] R. Larsen Banach Algebras, Marcel Dekker, New York, 1973

[12] K.B. Laursen; M.M. Neumann An Introduction to the Local Spectral Theory, Clarendon Press, Oxford, 2000

[13] B.M. Schreiber Measures with bounded convolution powers, Trans. Amer. Math. Soc., Volume 151 (1970), pp. 405-431

[14] J. Van Neerven The Asymptotic Behaviour of Semigroups of Linear Operators, Oper. Theory, Adv. Appl., vol. 88, Birkhäuser, Basel, Boston, Berlin, 1996

Cited by Sources:

Comments - Policy