Comptes Rendus
Partial differential equations/Calculus of variations
Minimizing movements along a sequence of functionals and curves of maximal slope
Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 685-689.

We prove that a general condition introduced by Colombo and Gobbino to study limits of curves of maximal slope allows us to characterize also minimizing movements along a sequence of functionals as curves of maximal slope of a limit functional.

Nous montrons qu'une condition générale présentée par Colombo et Gobbino pour étudier les limites des courbes de pente maximale permet également de caractériser les mouvements minimisants le long d'une séquence de fonctionelles comme des courbes de pente maximale de la fonctionnelle limite.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.04.011

Andrea Braides 1; Maria Colombo 2; Massimo Gobbino 3; Margherita Solci 4

1 Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
2 ETH Institute for Theoretical Studies, Clausiusstrasse 47, CH-8092 Zürich, Switzerland
3 Dipartimento di Matematica, Via Filippo Buonarroti 1c, 56127 Pisa, Italy
4 DADU, Università di Sassari, Piazza Duomo 6, 07041 Alghero (SS), Italy
@article{CRMATH_2016__354_7_685_0,
     author = {Andrea Braides and Maria Colombo and Massimo Gobbino and Margherita Solci},
     title = {Minimizing movements along a sequence of functionals and curves of maximal slope},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {685--689},
     publisher = {Elsevier},
     volume = {354},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crma.2016.04.011},
     language = {en},
}
TY  - JOUR
AU  - Andrea Braides
AU  - Maria Colombo
AU  - Massimo Gobbino
AU  - Margherita Solci
TI  - Minimizing movements along a sequence of functionals and curves of maximal slope
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 685
EP  - 689
VL  - 354
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2016.04.011
LA  - en
ID  - CRMATH_2016__354_7_685_0
ER  - 
%0 Journal Article
%A Andrea Braides
%A Maria Colombo
%A Massimo Gobbino
%A Margherita Solci
%T Minimizing movements along a sequence of functionals and curves of maximal slope
%J Comptes Rendus. Mathématique
%D 2016
%P 685-689
%V 354
%N 7
%I Elsevier
%R 10.1016/j.crma.2016.04.011
%G en
%F CRMATH_2016__354_7_685_0
Andrea Braides; Maria Colombo; Massimo Gobbino; Margherita Solci. Minimizing movements along a sequence of functionals and curves of maximal slope. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 685-689. doi : 10.1016/j.crma.2016.04.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.011/

[1] F. Almgren; J.E. Taylor Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differ. Geom., Volume 42 (1995), pp. 1-22

[2] L. Ambrosio; N. Gigli A user's guide to optimal transport (B. Piccoli; M. Rascle, eds.), Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, Springer, Berlin, 2013, pp. 1-155

[3] L. Ambrosio; N. Gigli; G. Savaré Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH, Zürich, Birkhhäuser, Basel, Switzerland, 2008

[4] A. Braides Local Minimization, Variational Evolution and Γ-convergence, Springer Verlag, Berlin, 2014

[5] A. Braides; A. Defranceschi; E. Vitali Variational evolution of one-dimensional Lennard–Jones systems, Netw. Heterog. Media, Volume 9 (2014), pp. 217-238

[6] A. Braides; M.S. Gelli; M. Novaga Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., Volume 95 (2010), pp. 469-498

[7] M. Colombo; M. Gobbino Passing to the limit in maximal slope curves: from a regularized Perona–Malik equation to the total variation flow, Math. Models Methods Appl. Sci., Volume 22 (2012), p. 1250017

[8] E. Sandier; S. Serfaty Gamma-convergence of gradient flows and application to Ginzburg–Landau, Commun. Pure Appl. Math., Volume 57 (2004), pp. 1627-1672

Cited by Sources:

Comments - Policy