We prove that a general condition introduced by Colombo and Gobbino to study limits of curves of maximal slope allows us to characterize also minimizing movements along a sequence of functionals as curves of maximal slope of a limit functional.
Nous montrons qu'une condition générale présentée par Colombo et Gobbino pour étudier les limites des courbes de pente maximale permet également de caractériser les mouvements minimisants le long d'une séquence de fonctionelles comme des courbes de pente maximale de la fonctionnelle limite.
Accepted:
Published online:
Andrea Braides 1; Maria Colombo 2; Massimo Gobbino 3; Margherita Solci 4
@article{CRMATH_2016__354_7_685_0, author = {Andrea Braides and Maria Colombo and Massimo Gobbino and Margherita Solci}, title = {Minimizing movements along a sequence of functionals and curves of maximal slope}, journal = {Comptes Rendus. Math\'ematique}, pages = {685--689}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.04.011}, language = {en}, }
TY - JOUR AU - Andrea Braides AU - Maria Colombo AU - Massimo Gobbino AU - Margherita Solci TI - Minimizing movements along a sequence of functionals and curves of maximal slope JO - Comptes Rendus. Mathématique PY - 2016 SP - 685 EP - 689 VL - 354 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2016.04.011 LA - en ID - CRMATH_2016__354_7_685_0 ER -
%0 Journal Article %A Andrea Braides %A Maria Colombo %A Massimo Gobbino %A Margherita Solci %T Minimizing movements along a sequence of functionals and curves of maximal slope %J Comptes Rendus. Mathématique %D 2016 %P 685-689 %V 354 %N 7 %I Elsevier %R 10.1016/j.crma.2016.04.011 %G en %F CRMATH_2016__354_7_685_0
Andrea Braides; Maria Colombo; Massimo Gobbino; Margherita Solci. Minimizing movements along a sequence of functionals and curves of maximal slope. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 685-689. doi : 10.1016/j.crma.2016.04.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.04.011/
[1] Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differ. Geom., Volume 42 (1995), pp. 1-22
[2] A user's guide to optimal transport (B. Piccoli; M. Rascle, eds.), Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, Springer, Berlin, 2013, pp. 1-155
[3] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH, Zürich, Birkhhäuser, Basel, Switzerland, 2008
[4] Local Minimization, Variational Evolution and Γ-convergence, Springer Verlag, Berlin, 2014
[5] Variational evolution of one-dimensional Lennard–Jones systems, Netw. Heterog. Media, Volume 9 (2014), pp. 217-238
[6] Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., Volume 95 (2010), pp. 469-498
[7] Passing to the limit in maximal slope curves: from a regularized Perona–Malik equation to the total variation flow, Math. Models Methods Appl. Sci., Volume 22 (2012), p. 1250017
[8] Gamma-convergence of gradient flows and application to Ginzburg–Landau, Commun. Pure Appl. Math., Volume 57 (2004), pp. 1627-1672
Cited by Sources:
Comments - Policy