[Distances entre classes d'applications de Sobolev à valeurs dans une sphère]
On introduit une relation d'équivalence sur
We introduce an equivalence relation on
Accepté le :
Publié le :
Haïm Brézis 1, 2 ; Petru Mironescu 3 ; Itai Shafrir 2
@article{CRMATH_2016__354_7_677_0, author = {Ha{\"\i}m Br\'ezis and Petru Mironescu and Itai Shafrir}, title = {Distances between classes of sphere-valued {Sobolev} maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {677--684}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.05.001}, language = {en}, }
Haïm Brézis; Petru Mironescu; Itai Shafrir. Distances between classes of sphere-valued Sobolev maps. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 677-684. doi : 10.1016/j.crma.2016.05.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.05.001/
[1] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75
[2] H. Brézis, P. Mironescu, Sobolev maps with values into the circle, Birkhäuser, in preparation.
[3]
[4] H. Brézis, P. Mironescu, I. Shafrir, Distances between classes in
[5] Distances between homotopy classes of
[6] Degree theory and BMO. I. Compact manifolds without boundaries, Sel. Math. New Ser., Volume 1 (1995), pp. 197-263
[7] On the distance between homotopy classes of maps between spheres, J. Fixed Point Theory Appl., Volume 15 (2014), pp. 501-518
[8] The distance between homotopy classes of
- Distances between classes in
W 1 , 1 ( Ω ; S 1 ), Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 1 | DOI:10.1007/s00526-017-1280-z
Cité par 1 document. Sources : Crossref
Commentaires - Politique