We show here a “weak” Hölder regularity up to the boundary of the solution to the Dirichlet problem for the complex Monge–Ampère equation with data in the space and Ω satisfying an f-property. The f-property is a potential-theoretical condition that holds for all pseudoconvex domains of finite type and many examples of infinite-type ones.
Nous montrons ici une régularité de Hölder « faible » jusqu'au bord d'une solution du problème de Dirichlet pour l'équation de Monge–Ampère complexe, de donnée dans l'espace , sur un domaine satisfaisant une f-propriété. Cette f-propriété est une condition de théorie du potentiel qui est satisfaite par tous les domaines pseudo-convexes de type fini et de nombreux exemples de type infini.
Accepted:
Published online:
Luca Baracco 1; Tran Vu Khanh 2; Stefano Pinton 1
@article{CRMATH_2017__355_4_411_0, author = {Luca Baracco and Tran Vu Khanh and Stefano Pinton}, title = {The complex {Monge{\textendash}Amp\`ere} equation on weakly pseudoconvex domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {411--414}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.02.004}, language = {en}, }
TY - JOUR AU - Luca Baracco AU - Tran Vu Khanh AU - Stefano Pinton TI - The complex Monge–Ampère equation on weakly pseudoconvex domains JO - Comptes Rendus. Mathématique PY - 2017 SP - 411 EP - 414 VL - 355 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2017.02.004 LA - en ID - CRMATH_2017__355_4_411_0 ER -
Luca Baracco; Tran Vu Khanh; Stefano Pinton. The complex Monge–Ampère equation on weakly pseudoconvex domains. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 411-414. doi : 10.1016/j.crma.2017.02.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.02.004/
[1] Hölder regularity of the solution to the complex Monge–Ampère equation with density, Calc. Var. Partial Differ. Equ., Volume 55 (2016), p. 74
[2] The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44
[3] The complex Monge–Ampère operator in hyperconvex domains, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 23 (1997) no. 4, pp. 721-747 (1996)
[4] The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations, Commun. Pure Appl. Math., Volume 38 (1985) no. 2, pp. 209-252
[5] Domains of finite type and Hölder continuity of the Perron–Bremermann function, Proc. Amer. Math. Soc., Volume 125 (1997) no. 12, pp. 3569-3574
[6] Hölder continuous solutions to Monge–Ampère equations, Bull. Lond. Math. Soc., Volume 40 (2008) no. 6, pp. 1070-1080
[7] Lower bounds on the Kobayashi metric near a point of infinite type, J. Geom. Anal., Volume 26 (2016) no. 1, pp. 616-629
[8] Regularity of the -Neumann problem at point of infinite type, J. Funct. Anal., Volume 259 (2010) no. 11, pp. 2760-2775
[9] Boundary regularity of the solution to the complex Monge–Ampère equation on pseudoconvex domains of infinite type, Math. Res. Lett., Volume 22 (2015) no. 2, pp. 467-484
[10] The complex Monge–Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117
[11] On the existence and regularity of Dirichlet problem for complex Monge–Ampère equations on weakly pseudoconvex domains, Calc. Var. Partial Differ. Equ., Volume 20 (2004) no. 2, pp. 119-132
Cited by Sources:
☆ The research of T.V. Khanh was supported by the Australian Research Council DE160100173.
Comments - Policy