In this note, we describe a relation between Lelong numbers and complex singularity exponents. As an application, we obtain a new proof of Siu's semicontinuity theorem for Lelong numbers.
Dans cette note, nous décrivons une relation entre les nombres de Lelong et les exposants de singularités complexes. Comme application, nous obtenons une nouvelle preuve du théorème de semi-continuité de Siu pour les nombres de Lelong.
Accepted:
Published online:
Qi'an Guan 1; Xiangyu Zhou 2
@article{CRMATH_2017__355_4_415_0, author = {Qi'an Guan and Xiangyu Zhou}, title = {Lelong numbers, complex singularity exponents, and {Siu's} semicontinuity theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {415--419}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.03.006}, language = {en}, }
Qi'an Guan; Xiangyu Zhou. Lelong numbers, complex singularity exponents, and Siu's semicontinuity theorem. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 415-419. doi : 10.1016/j.crma.2017.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.006/
[1] The openness conjecture for plurisubharmonic functions | arXiv
[2] Algebraic values of meromorphic maps, Invent. Math., Volume 10 (1970), pp. 267-287 (Addendum: Invent. Math., 11, 1970, pp. 163-166)
[3] Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité, Acta Math., Volume 159 (1987) no. 3–4, pp. 153-169 (in French)
[4] Multiplier ideal sheaves and analytic methods in algebraic geometry, Trieste, Italy, 2000 (ICTP Lect. Notes), Volume vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, Italy (2001), pp. 1-148
[5] Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010
[6] Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html (electronically accessible at:)
[7] Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 34 (2001) no. 4, pp. 525-556
[8] The Valuative Tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004 (xiv+234 pp) (ISBN: 3-540-22984-1)
[9] Valuative analysis of planar plurisubharmonic functions, Invent. Math., Volume 162 (2005) no. 2, pp. 271-311
[10] Valuations and multiplier ideals, J. Amer. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684
[11] An Introduction to Complex Analysis in Several Variables, North-Holland Math. Library, vol. 7, Elsevier Science Publishers, New York, 1966
[12] Optimal constant in an extension problem and a proof of a conjecture of Ohsawa, Sci. China Math., Volume 58 (2015) no. 1, pp. 35-59 | DOI
[13] A solution of an extension problem with optimal estimate and applications, Ann. of Math. (2), Volume 181 (2015) no. 3, pp. 1139-1208
[14] A proof of Demailly's strong openness conjecture, Ann. of Math. (2), Volume 182 (2015) no. 2, pp. 605-616
[15] Effectiveness of Demailly's strong openness conjecture and related problems, Invent. Math., Volume 202 (2015) no. 2, pp. 635-676
[16] Characterization of multiplier ideal sheaves with weights of Lelong number one, Adv. Math., Volume 285 (2015), pp. 1688-1705
[17] C.O. Kiselman, Un nombre de Lelong raffiné, in: Séminaire d'analyse complexe et géométrie 1985–1987, Faculté des sciences de Tunis & Faculté des sciences et techniques de Monastir, Tunisie, pp. 61–70.
[18] Plurisubharmonic functions and potential theory in several complex variables, Dev. Math. 1950–2000, Birkhäuser, Basel, Switzerland, 2000, pp. 655-714
[19] et al. Flips and abundance for algebraic threefolds, Astérisque, Volume 211 (1992)
[20] Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature, Ann. of Math. (2), Volume 132 (1990) no. 3, pp. 549-596
[21] 3-fold log flips, Izv. Russ. Acad. Nauk Ser. Mat., Volume 56 (1992), pp. 105-203
[22] Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., Volume 27 (1974), pp. 53-156
[23] Multiplier ideal sheaves in complex and algebraic geometry, Sci. China Ser. A, Volume 48 (2005) no. Suppl., pp. 1-31
[24] Sous-ensembles analytiques d'ordre fini ou infini dans , Bull. Soc. Math. France, Volume 100 (1972), pp. 353-408
[25] On Kähler–Einstein metrics on certain Kähler manifolds with , Invent. Math., Volume 89 (1987) no. 2, pp. 225-246
Cited by Sources:
☆ The authors were partially supported by NSFC-11431013. The second author would like to thank NTNU for offering him Onsager Professorship. The first author was partially supported by NSFC-11522101.
Comments - Policy