Let be the wonderful compactification of a simple affine algebraic group G of adjoint type defined over . Let be the closure of a maximal torus . We prove that the group of all automorphisms of the variety is the semi-direct product , where is the normalizer of T in G and D is the group of all automorphisms of the Dynkin diagram, if . Note that if , then and so in this case .
Soit la compactification magnifique d'un groupe algébrique affine simple G de type adjoint défini sur . Soit la clôture d'un tore maximal . Si , nous montrons que le groupe de tous les automorphismes de la variété est le produit semi-direct , où est le normalisateur de T dans G et D est le groupe de tous les automorphismes du diagramme de Dynkin. Remarquez que si , alors et donc dans ce cas .
Accepted:
Published online:
Indranil Biswas 1; Subramaniam Senthamarai Kannan 2; Donihakalu Shankar Nagaraj 3
@article{CRMATH_2017__355_4_452_0,
author = {Indranil Biswas and Subramaniam Senthamarai Kannan and Donihakalu Shankar Nagaraj},
title = {The full automorphism group of $ \stackrel{‾}{T}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {452--454},
year = {2017},
publisher = {Elsevier},
volume = {355},
number = {4},
doi = {10.1016/j.crma.2017.02.008},
language = {en},
}
TY - JOUR
AU - Indranil Biswas
AU - Subramaniam Senthamarai Kannan
AU - Donihakalu Shankar Nagaraj
TI - The full automorphism group of $ \stackrel{‾}{T}$
JO - Comptes Rendus. Mathématique
PY - 2017
SP - 452
EP - 454
VL - 355
IS - 4
PB - Elsevier
DO - 10.1016/j.crma.2017.02.008
LA - en
ID - CRMATH_2017__355_4_452_0
ER -
Indranil Biswas; Subramaniam Senthamarai Kannan; Donihakalu Shankar Nagaraj. The full automorphism group of $ \stackrel{‾}{T}$. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 452-454. doi: 10.1016/j.crma.2017.02.008
[1] Automorphisms of , C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015), pp. 785-787
[2] Equivariant Chow ring and Chern classes of wonderful symmetric varieties of minimal rank, Transform. Groups, Volume 13 (2008), pp. 471-493
[3] Frobenius Splitting Methods in Geometry and Representation Theory, Prog. Math., vol. 231, Birkhäuser Boston, Inc., Boston, MA, USA, 2005
[4] The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., Volume 4 (1995), pp. 17-50
[5] Complete symmetric varieties, Montecatini, 1982 (Lect. Notes Math.), Volume vol. 996, Springer, Berlin (1983), pp. 1-44
[6] Linear Algebraic Groups, Grad. Texts Math., vol. 21, Springer-Verlag, New York–Heidelberg, 1975
[7] Toroidal algebraic groups, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 984-988
Cited by Sources:
Comments - Policy
