Let be the wonderful compactification of a simple affine algebraic group G of adjoint type defined over . Let be the closure of a maximal torus . We prove that the group of all automorphisms of the variety is the semi-direct product , where is the normalizer of T in G and D is the group of all automorphisms of the Dynkin diagram, if . Note that if , then and so in this case .
Soit la compactification magnifique d'un groupe algébrique affine simple G de type adjoint défini sur . Soit la clôture d'un tore maximal . Si , nous montrons que le groupe de tous les automorphismes de la variété est le produit semi-direct , où est le normalisateur de T dans G et D est le groupe de tous les automorphismes du diagramme de Dynkin. Remarquez que si , alors et donc dans ce cas .
Accepted:
Published online:
Indranil Biswas 1; Subramaniam Senthamarai Kannan 2; Donihakalu Shankar Nagaraj 3
@article{CRMATH_2017__355_4_452_0, author = {Indranil Biswas and Subramaniam Senthamarai Kannan and Donihakalu Shankar Nagaraj}, title = {The full automorphism group of $ \stackrel{‾}{T}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {452--454}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.02.008}, language = {en}, }
TY - JOUR AU - Indranil Biswas AU - Subramaniam Senthamarai Kannan AU - Donihakalu Shankar Nagaraj TI - The full automorphism group of $ \stackrel{‾}{T}$ JO - Comptes Rendus. Mathématique PY - 2017 SP - 452 EP - 454 VL - 355 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2017.02.008 LA - en ID - CRMATH_2017__355_4_452_0 ER -
Indranil Biswas; Subramaniam Senthamarai Kannan; Donihakalu Shankar Nagaraj. The full automorphism group of $ \stackrel{‾}{T}$. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 452-454. doi : 10.1016/j.crma.2017.02.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.02.008/
[1] Automorphisms of , C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015), pp. 785-787
[2] Equivariant Chow ring and Chern classes of wonderful symmetric varieties of minimal rank, Transform. Groups, Volume 13 (2008), pp. 471-493
[3] Frobenius Splitting Methods in Geometry and Representation Theory, Prog. Math., vol. 231, Birkhäuser Boston, Inc., Boston, MA, USA, 2005
[4] The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., Volume 4 (1995), pp. 17-50
[5] Complete symmetric varieties, Montecatini, 1982 (Lect. Notes Math.), Volume vol. 996, Springer, Berlin (1983), pp. 1-44
[6] Linear Algebraic Groups, Grad. Texts Math., vol. 21, Springer-Verlag, New York–Heidelberg, 1975
[7] Toroidal algebraic groups, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 984-988
Cited by Sources:
Comments - Policy