We provide a new characterization of the logarithmic Sobolev inequality.
Nous donnons une nouvelle caractérisation de l'inégalité de Sobolev logarithmique.
Accepted:
Published online:
Hoai-Minh Nguyen 1; Marco Squassina 2
@article{CRMATH_2017__355_4_447_0, author = {Hoai-Minh Nguyen and Marco Squassina}, title = {Logarithmic {Sobolev} inequality revisited}, journal = {Comptes Rendus. Math\'ematique}, pages = {447--451}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.02.009}, language = {en}, }
Hoai-Minh Nguyen; Marco Squassina. Logarithmic Sobolev inequality revisited. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 447-451. doi : 10.1016/j.crma.2017.02.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.02.009/
[1] Gross's logarithmic Sobolev inequality: a simple proof, Amer. J. Math., Volume 101 (1979), pp. 1265-1269
[2] A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 75-80
[3] Another look at Sobolev spaces (J.L. Menaldi; E. Rofman; A. Sulem, eds.), Optimal Control and Partial Differential Equations. A Volume in Honor of Professor Alain Bensoussan's 60th Birthday, IOS Press, Amsterdam, 2001, pp. 439-455
[4] Limiting embedding theorems for when and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101
[5] How to recognize constant functions. Connections with Sobolev spaces, Russ. Math. Surv., Volume 57 (2002), pp. 693-708
[6] New approximations of the total variation and filters in imaging, Rend. Accad. Lincei, Volume 26 (2015), pp. 223-240
[7] The BBM formula revisited, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 27 (2016), pp. 515-533
[8] Two subtle convex nonlocal approximations of the BV-norm, Nonlinear Anal., Volume 137 (2016), pp. 222-245
[9] Non-local functionals related to the total variation and connections with image processing (preprint) | arXiv
[10] Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal., Volume 7 (1983), pp. 1127-1140
[11] An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, vol. 26, Universidade Federal do Rio de Janeiro, 1996
[12] Équations d'évolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse Math., Volume 2 (1980), pp. 21-51
[13] On logarithmic Sobolev inequalities for higher order fractional derivatives, C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005), pp. 205-208
[14] P. d'Avenia, M. Squassina, Ground states for fractional magnetic operators, ESAIM COCV, in press, . | DOI
[15] On the logarithmic Schrödinger equation, Commun. Contemp. Math., Volume 16 (2014)
[16] The optimal Euclidean -Sobolev logarithmic inequality, J. Funct. Anal., Volume 197 (2003), pp. 151-161
[17] Logarithmic Sobolev Inequalities, Amer. J. Math., Volume 97 (1975), pp. 1061-1083
[18] Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, 2001
[19] Some new characterizations of Sobolev spaces, J. Funct. Anal., Volume 237 (2006), pp. 689-720
[20] Further characterizations of Sobolev spaces, J. Eur. Math. Soc., Volume 10 (2008), pp. 191-229
[21] Some inequalities related to Sobolev norms, Calc. Var. Partial Differ. Equ., Volume 41 (2011), pp. 483-509
[22] H-M. Nguyen, A. Pinamonti, M. Squassina, E. Vecchi, A new characterization of magnetic Sobolev spaces, in preparation.
[23] Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inf. Control, Volume 2 (1959), pp. 101-112
[24] Uniqueness of positive ground state solutions of the logarithmic Schrödinger equation, Arch. Ration. Mech. Anal., Volume 222 (2016), pp. 1581-1600
[25] Logarithmic nonlinearity in theories of quantum gravity: origin of time and observational consequences, Gravit. Cosmol., Volume 16 (2010), pp. 288-297
Cited by Sources:
Comments - Policy