A Riemannian manifold has if its sectional curvatures satisfy or pointwise, and if every tangent vector lies in a tangent plane of curvature ε. We present a construction of an infinite-dimensional family of compact three-manifolds.
Une variété riemannienne est dite si sa courbure sectionnelle satisfait ponctuellement ou et si chaque vecteur tangent appartient à un plan tangent de courbure ε. Nous construisons une famille de dimension infinie de variétés compactes de dimension 3, qui sont .
Accepted:
Published online:
Benjamin Schmidt 1; Jon Wolfson 1
@article{CRMATH_2017__355_4_460_0, author = {Benjamin Schmidt and Jon Wolfson}, title = {Three-manifolds of constant vector curvature one}, journal = {Comptes Rendus. Math\'ematique}, pages = {460--463}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.03.001}, language = {en}, }
Benjamin Schmidt; Jon Wolfson. Three-manifolds of constant vector curvature one. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 460-463. doi : 10.1016/j.crma.2017.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.001/
[1] Nonpositively curved manifolds of higher rank, Ann. of Math. (2), Volume 122 (1985) no. 3, pp. 597-609
[2] Three-manifolds with many flat planes, Trans. Amer. Math. Soc. (2017) (in press) | DOI
[3] Manifolds of nonpositive curvature and their buildings, Publ. Math. IHÉS, Volume 65 (1987), pp. 35-59
[4] A characterization of hyperbolic rank one negatively curved homogeneous spaces, Geom. Dedic., Volume 128 (2002), pp. 221-246
[5] 2-frame flow dynamics and hyperbolic rank-rigidity in nonpositive curvature, J. Mod. Dyn., Volume 2 (2008) no. 4, pp. 719-740
[6] A geometric characterization of negatively curved locally symmetric spaces, J. Differ. Geom., Volume 34 (1991) no. 1, pp. 193-221
[7] Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. (2), Volume 101 (1975), pp. 317-331
[8] S. Lin, Curvature free rigidity for higher rank three-manifolds, arXiv preprint.
[9] S. Lin, B. Schmidt, Manifolds with many hyperbolic planes, arXiv preprint.
[10] The fundamental equations of a submersion, Mich. Math. J., Volume 13 (1966) no. 4, pp. 459-469
[11] Positively curved manifolds with large spherical rank, Comment. Math. Helv., Volume 85 (2016), pp. 259-271
[12] Three manifolds of constant vector curvature, Indiana Univ. Math. J., Volume 63 (2014), pp. 1757-1783
[13] Complete curvature homogeneous metrics on , Pac. J. Math., Volume 273 (2015), pp. 499-509
[14] On the Riemannian manifolds of the form , Kodai Math. Semin. Rep., Volume 26 (1975), pp. 343-347
[15] Spherical rank rigidity and Blaschke manifolds, Duke Math. J., Volume 128 (2005), pp. 65-81
[16] Some examples of higher rank manifolds of nonnegative curvature, Comment. Math. Helv., Volume 65 (1990), pp. 299-317
[17] The higher rank rigidity theorem for manifolds with no focal points, Geom. Dedic., Volume 164 (2013), pp. 319-349
Cited by Sources:
Comments - Policy