Comptes Rendus
Differential geometry
Three-manifolds of constant vector curvature one
[Variétés de dimension trois à courbure vectorielle constante un]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 460-463.

Une variété riemannienne est dite CVC(ϵ) si sa courbure sectionnelle satisfait ponctuellement secε ou secε et si chaque vecteur tangent appartient à un plan tangent de courbure ε. Nous construisons une famille de dimension infinie de variétés compactes de dimension 3, qui sont CVC(1).

A Riemannian manifold has CVC(ϵ) if its sectional curvatures satisfy secε or secε pointwise, and if every tangent vector lies in a tangent plane of curvature ε. We present a construction of an infinite-dimensional family of compact CVC(1) three-manifolds.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.03.001
Benjamin Schmidt 1 ; Jon Wolfson 1

1 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
@article{CRMATH_2017__355_4_460_0,
     author = {Benjamin Schmidt and Jon Wolfson},
     title = {Three-manifolds of constant vector curvature one},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {460--463},
     publisher = {Elsevier},
     volume = {355},
     number = {4},
     year = {2017},
     doi = {10.1016/j.crma.2017.03.001},
     language = {en},
}
TY  - JOUR
AU  - Benjamin Schmidt
AU  - Jon Wolfson
TI  - Three-manifolds of constant vector curvature one
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 460
EP  - 463
VL  - 355
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2017.03.001
LA  - en
ID  - CRMATH_2017__355_4_460_0
ER  - 
%0 Journal Article
%A Benjamin Schmidt
%A Jon Wolfson
%T Three-manifolds of constant vector curvature one
%J Comptes Rendus. Mathématique
%D 2017
%P 460-463
%V 355
%N 4
%I Elsevier
%R 10.1016/j.crma.2017.03.001
%G en
%F CRMATH_2017__355_4_460_0
Benjamin Schmidt; Jon Wolfson. Three-manifolds of constant vector curvature one. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 460-463. doi : 10.1016/j.crma.2017.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.001/

[1] W. Ballmann Nonpositively curved manifolds of higher rank, Ann. of Math. (2), Volume 122 (1985) no. 3, pp. 597-609

[2] R. Bettiol; B. Schmidt Three-manifolds with many flat planes, Trans. Amer. Math. Soc. (2017) (in press) | DOI

[3] K. Burns; R. Spatzier Manifolds of nonpositive curvature and their buildings, Publ. Math. IHÉS, Volume 65 (1987), pp. 35-59

[4] C. Connell A characterization of hyperbolic rank one negatively curved homogeneous spaces, Geom. Dedic., Volume 128 (2002), pp. 221-246

[5] D. Constantine 2-frame flow dynamics and hyperbolic rank-rigidity in nonpositive curvature, J. Mod. Dyn., Volume 2 (2008) no. 4, pp. 719-740

[6] U. Hamenstädt A geometric characterization of negatively curved locally symmetric spaces, J. Differ. Geom., Volume 34 (1991) no. 1, pp. 193-221

[7] J. Kazdan; F. Warner Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. (2), Volume 101 (1975), pp. 317-331

[8] S. Lin, Curvature free rigidity for higher rank three-manifolds, arXiv preprint.

[9] S. Lin, B. Schmidt, Manifolds with many hyperbolic planes, arXiv preprint.

[10] B. O'Neill The fundamental equations of a submersion, Mich. Math. J., Volume 13 (1966) no. 4, pp. 459-469

[11] B. Schmidt; R. Shankar; R. Spatzier Positively curved manifolds with large spherical rank, Comment. Math. Helv., Volume 85 (2016), pp. 259-271

[12] B. Schmidt; J. Wolfson Three manifolds of constant vector curvature, Indiana Univ. Math. J., Volume 63 (2014), pp. 1757-1783

[13] B. Schmidt; J. Wolfson Complete curvature homogeneous metrics on SL2(R), Pac. J. Math., Volume 273 (2015), pp. 499-509

[14] K. Sekigawa On the Riemannian manifolds of the form B×fF, Kodai Math. Semin. Rep., Volume 26 (1975), pp. 343-347

[15] K. Shankar; R. Spatzier; B. Wilking Spherical rank rigidity and Blaschke manifolds, Duke Math. J., Volume 128 (2005), pp. 65-81

[16] R. Spatzier; M. Strake Some examples of higher rank manifolds of nonnegative curvature, Comment. Math. Helv., Volume 65 (1990), pp. 299-317

[17] W. Watkins The higher rank rigidity theorem for manifolds with no focal points, Geom. Dedic., Volume 164 (2013), pp. 319-349

Cité par Sources :

Commentaires - Politique