In this work, we analyze the convergence of the POD expansion for the solution to the heat conduction parameterized with respect to the thermal conductivity coefficient. We obtain error bounds for the POD approximation in high-order norms in space that assure an exponential rate of convergence, uniformly with respect to the parameter whenever it remains within a compact set of positive numbers. We present some numerical tests that confirm this theoretical accuracy.
On considère le problème de la conduction thermique paramétrée par rapport au coefficient de conductivité thermique, et on s'intéresse à la décomposition de sa solution par la méthode POD. Nous analysons la convergence de la solution tensorielle. Nous obtenons des bornes d'erreur pour l'approximation POD dans les normes de Sobolev d'ordre élevé, qui assurent un taux exponentiel de convergence, uniformément par rapport au paramètre si celui-ci reste dans un ensemble compact de nombres positifs. Enfin, nous présentons quelques tests numériques qui confirment nos résultats théoriques.
Accepted:
Published online:
Mejdi Azaïez 1; Faker Ben Belgacem 2; Tomás Chacón Rebollo 3; Macarena Gómez Mármol 4; Isabel Sánchez Muñoz 5
@article{CRMATH_2017__355_4_432_0, author = {Mejdi Aza{\"\i}ez and Faker Ben Belgacem and Tom\'as Chac\'on Rebollo and Macarena G\'omez M\'armol and Isabel S\'anchez Mu\~noz}, title = {Error bounds in high-order {Sobolev} norms for {POD} expansions of parameterized transient temperatures}, journal = {Comptes Rendus. Math\'ematique}, pages = {432--438}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.03.002}, language = {en}, }
TY - JOUR AU - Mejdi Azaïez AU - Faker Ben Belgacem AU - Tomás Chacón Rebollo AU - Macarena Gómez Mármol AU - Isabel Sánchez Muñoz TI - Error bounds in high-order Sobolev norms for POD expansions of parameterized transient temperatures JO - Comptes Rendus. Mathématique PY - 2017 SP - 432 EP - 438 VL - 355 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2017.03.002 LA - en ID - CRMATH_2017__355_4_432_0 ER -
%0 Journal Article %A Mejdi Azaïez %A Faker Ben Belgacem %A Tomás Chacón Rebollo %A Macarena Gómez Mármol %A Isabel Sánchez Muñoz %T Error bounds in high-order Sobolev norms for POD expansions of parameterized transient temperatures %J Comptes Rendus. Mathématique %D 2017 %P 432-438 %V 355 %N 4 %I Elsevier %R 10.1016/j.crma.2017.03.002 %G en %F CRMATH_2017__355_4_432_0
Mejdi Azaïez; Faker Ben Belgacem; Tomás Chacón Rebollo; Macarena Gómez Mármol; Isabel Sánchez Muñoz. Error bounds in high-order Sobolev norms for POD expansions of parameterized transient temperatures. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 432-438. doi : 10.1016/j.crma.2017.03.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.002/
[1] Error bounds for POD expansions of parameterized transient temperatures, Comput. Methods Appl. Mech. Eng., Volume 305 (2016), pp. 501-511
[2] Análisis Funcional. Teoría y aplicaciones, Alianza Editorial, Madrid, Spain, 1984
[3] A priori convergence of the greedy algorithm for the parametrized reduced basis, Math. Model. Numer. Anal., Volume 46 (2012), pp. 595-603
[4] Approximation of high-dimensional parametric PDEs, Acta Numer. (2015), pp. 1-159
[5] Proper Orthogonal Decomposition: An Overview. Lecture Series 2002-04 and 2003-04 on Post-Processing of Experimental and Numerical Data, Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium, 2003
[6] New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265 http://www.freefem.org
[7] Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer Briefs Math., 2016
[8] Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monogr. Mech., Cambridge University Press, Cambridge, UK, 1996
[9] Eigenvalues of analytic kernels, SIAM J. Math. Anal., Volume 15 (1984), pp. 133-136
[10] Probability Theory, Van Nostrand, Princeton, NJ, 1988
[11] On the POD Method. An Abstract Investigation with Applications to Reduced-Order Modeling and Suboptimal Control, Georg-August Universität, Göttingen, 2008 (PhD Thesis)
[12] Reduced Basis Methods for Partial Differential Equations, Springer, 2016
Cited by Sources:
Comments - Policy