In this paper, we study the existence of positive blow-up solutions for a general class of the second-order differential equations and systems, which are positive radially symmetric solutions to many elliptic problems in . We explore fixed point arguments applied to suitable integral equations to get solutions.
Nous étudions dans ce texte l'existence de solutions positives, non bornées, pour une classe générale d'équations et systèmes différentiels du second ordre. Il s'agit de solutions à symétrie radiale, positives, de maints problèmes elliptiques dans . Pour obtenir ces solutions, nous passons par des arguments de point fixe pour des opérateurs intégraux adéquats.
Accepted:
Published online:
Angelo R.F. de Holanda 1
@article{CRMATH_2017__355_4_426_0, author = {Angelo R.F. de Holanda}, title = {Blow-up solutions for a general class of the second-order differential equations on the half line}, journal = {Comptes Rendus. Math\'ematique}, pages = {426--431}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.03.003}, language = {en}, }
TY - JOUR AU - Angelo R.F. de Holanda TI - Blow-up solutions for a general class of the second-order differential equations on the half line JO - Comptes Rendus. Mathématique PY - 2017 SP - 426 EP - 431 VL - 355 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2017.03.003 LA - en ID - CRMATH_2017__355_4_426_0 ER -
Angelo R.F. de Holanda. Blow-up solutions for a general class of the second-order differential equations on the half line. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 426-431. doi : 10.1016/j.crma.2017.03.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.03.003/
[1] A necessary and sufficient condition for the existence of the positive radial solutions to Hessian equations and systems with weights, Acta Math. Sci., Volume 37B (2017) no. 1, pp. 47-57
[2] On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Ann. Math., Volume 186 (2007), pp. 539-564
[3] Existence theorems for elliptic Monge–Ampère equations in the plane, Differ. Integral Equ., Volume 3 (1990), pp. 487-493
[4] Existence of positive radial solutions for quasilinear elliptic equations and systems, Electron. J. Differ. Equ., Volume 50 (2016), pp. 1-9
[5] Existence of entire positive k-convex solutions to Hessian equations and systems with weights, Appl. Math. Lett., Volume 50 (2015), pp. 48-55
Cited by Sources:
Comments - Policy