We show that for an drift b in two dimensions, if the Hardy norm of is small, then the weak solutions to have the same optimal Hölder regularity as in the case of divergence-free drift, that is, for all .
Nous démontrons que, pour une dérive , si la norme de Hardy de est petite, alors les solutions faibles de (en dimension deux) ont la même régularité Hölder que dans le cas de la dérive incompressible, c'est-à-dire que pour tout .
Accepted:
Published online:
Nam Q. Le 1
@article{CRMATH_2017__355_4_439_0, author = {Nam Q. Le}, title = {On optimal {H\"older} regularity of solutions to the equation {\ensuremath{\Delta}\protect\emph{u}\,+\,\protect\emph{b}\,\ensuremath{\cdot}\,\ensuremath{\nabla}\protect\emph{u}\,=\,0} in two dimensions}, journal = {Comptes Rendus. Math\'ematique}, pages = {439--446}, publisher = {Elsevier}, volume = {355}, number = {4}, year = {2017}, doi = {10.1016/j.crma.2017.02.005}, language = {en}, }
Nam Q. Le. On optimal Hölder regularity of solutions to the equation Δu + b ⋅ ∇u = 0 in two dimensions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 4, pp. 439-446. doi : 10.1016/j.crma.2017.02.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.02.005/
[1] Un résultat de régularité pour les solutions de l'équation de surfaces à courbure moyenne prescrite, C. R. Acad. Sci. Paris, Ser. I, Volume 314 (1992) no. 13, pp. 1003-1007
[2] Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), Volume 72 (1993) no. 3, pp. 247-286
[3] On the regularity of solutions to the equation , J. Math. Sci., Volume 195 (2013) no. 1, pp. 98-108
[4] Global well-posedness for an advection–diffusion equation arising in magneto-geostrophic dynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 2, pp. 283-301
[5] A new approach to interior regularity of elliptic systems with quadratic Jacobian structure in dimension two, Manuscr. Math., Volume 127 (2008) no. 1, pp. 121-135
[6] Harmonic Maps, Conservation Laws and Moving Frames, Camb. Tracts Math., vol. 150, Cambridge University Press, Cambridge, UK, 2002
[7] Conservation laws for conformally invariant variational problems, Invent. Math., Volume 168 (2007) no. 1, pp. 1-22
[8] The role of conservation laws in the analysis of conformally invariant problems, Topics in Modern Regularity Theory, CRM Ser., vol. 13, Edizioni della Normale, Pisa, Italy, 2012, pp. 117-167
[9] On divergence-free drifts, J. Differ. Equ., Volume 252 (2012) no. 1, pp. 505-540
[10] An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., Volume 26 (1969), pp. 318-344
Cited by Sources:
Comments - Policy