In this note, we prove a semi-continuity theorem for certain weighted log canonical thresholds of toric plurisubharmonic functions.
Dans cette note, nous démontrons un théorème de semi-continuité pour certains seuils log canoniques à poids de fonctions plurisousharmoniques toriques.
Accepted:
Published online:
Nguyen Xuan Hong 1
@article{CRMATH_2017__355_5_487_0, author = {Nguyen Xuan Hong}, title = {Semi-continuity properties of weighted log canonical thresholds of toric plurisubharmonic functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--492}, publisher = {Elsevier}, volume = {355}, number = {5}, year = {2017}, doi = {10.1016/j.crma.2017.04.014}, language = {en}, }
TY - JOUR AU - Nguyen Xuan Hong TI - Semi-continuity properties of weighted log canonical thresholds of toric plurisubharmonic functions JO - Comptes Rendus. Mathématique PY - 2017 SP - 487 EP - 492 VL - 355 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2017.04.014 LA - en ID - CRMATH_2017__355_5_487_0 ER -
Nguyen Xuan Hong. Semi-continuity properties of weighted log canonical thresholds of toric plurisubharmonic functions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 5, pp. 487-492. doi : 10.1016/j.crma.2017.04.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.014/
[1] The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier, Volume 46 (1996), pp. 1083-1094
[2] Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 34 (2001), pp. 525-556
[3] A sharp lower bound for the log canonical threshold, Acta Math., Volume 212 (2014), pp. 1-9
[4] Multiplier ideal sheaves associated with weights of log canonical threshold one, Adv. Math., Volume 302 (2016), pp. 40-47
[5] A proof of Demailly's strong openness conjecture, Ann. of Math. (2), Volume 182 (2015), pp. 605-616
[6] Effectiveness of Demailly's strong openness conjecture and related problems, Invent. Math., Volume 202 (2015) no. 2, pp. 635-676
[7] Characterization of multiplier ideal sheaves with weights of Lelong number one, Adv. Math., Volume 285 (2015), pp. 1688-1705
[8] A result on the comparison principle for the log canonical threshold of plurisubharmonic functions, Ann. Pol. Math., Volume 112 (2014), pp. 109-114
[9] A comparison principle for the log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013), pp. 441-443
[10] The weighted log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 352 (2014), pp. 283-288
[11] Continuity properties of certain weighted log canonical thresholds, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017), pp. 34-39
[12] Log canonical thresholds and Monge–Ampère masses, Math. Ann. (2017) | DOI
[13] The weighted log canonical thresholds of toric plurisubharmonic functions, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015) no. 2, pp. 127-131
[14] Local property of maximal plurifinely plurisubharmonic functions, J. Math. Anal. Appl., Volume 441 (2016), pp. 586-592
[15] Convergence in capacity of plurisubharmonic functions with given boundary values, Int. J. Math., Volume 28 (2017) no. 3 (article ID: 1750018, 14 p)
[16] Pluripotential Theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991
[17] On the extension of holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204
[18] Extremal cases for the log canonical threshold, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015) no. 1, pp. 21-24
[19] Approximation of plurifinely plurisubharmonic functions, J. Math. Anal. Appl., Volume 450 (2017), pp. 1062-1075
Cited by Sources:
☆ This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2016.06. The author would like to thank the referees for valuable remarks which lead to the improvements of the exposition of the paper.
Comments - Policy