Comptes Rendus
Number theory/Differential geometry
Bounded gaps between primes and the length spectra of arithmetic hyperbolic 3-orbifolds
[Petits écarts entre idéaux premiers et spectres de longueurs de 3-variétés hyperboliques arithmétiques]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1121-1126.

En 1992, Reid a demandé si deux 3-variétés hyperboliques partageant le même spectre de longueurs géodésiques sont nécessairement commensurables. Ceci s'avère être vrai quand les variétés sont arithmétiques, mais la question reste ouverte dans le cas non arithmétique. Comme premier pas vers une réponse négative à cette question, Futer et Millichap ont récemment construit un nombre infini de paires de 3-variétés hyperboliques non arithmétiques et non commensurables ayant le même volume et dont les spectres de longueurs commencent avec les mêmes m longueurs géodésiques. Dans le présent article, nous démontrons que ce phénomène est étonnamment commun dans le contexte arithmétique. En particulier, étant donné une 3-variété hyperbolique arithmétique dérivée d'une algèbre de quaternions, un sous-ensemble fini S de son spectre de longueurs géodésiques et un entier k2, nous construisons un nombre infini de k-tuples de 3-variétés hyperboliques arithmétiques qui sont non commensurables deux à deux, ont un spectre de longueurs géodésiques contenant S et dont le volume appartient à un intervalle de longueur bornée (cette borne est, en outre, universelle pour chaque entier k). Notre preuve s'appuie sur un résultat sur les petits écarts entre idéaux premiers d'un corps de nombres appartenant à un ensemble de Chebotarev ; ce résultat généralise un article récent de Thorner.

In 1992, Reid asked whether hyperbolic 3-manifolds with the same geodesic length spectra are necessarily commensurable. While this is known to be true for arithmetic hyperbolic 3-manifolds, the non-arithmetic case is still open. Building towards a negative answer to this question, Futer and Millichap recently constructed infinitely many pairs of non-commensurable, non-arithmetic hyperbolic 3-manifolds which have the same volume and whose length spectra begin with the same first m geodesic lengths. In the present paper, we show that this phenomenon is surprisingly common in the arithmetic setting. In particular, given any arithmetic hyperbolic 3-orbifold derived from a quaternion algebra, any finite subset S of its geodesic length spectrum, and any k2, we produce infinitely many k-tuples of arithmetic hyperbolic 3-orbifolds which are pairwise non-commensurable, have geodesic length spectra containing S, and have volumes lying in an interval of (universally) bounded length. The main technical ingredient in our proof is a bounded gaps result for prime ideals in number fields lying in Chebotarev sets which extends recent work of Thorner.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.07.002
Benjamin Linowitz 1 ; D.B. McReynolds 2 ; Paul Pollack 3 ; Lola Thompson 1

1 Department of Mathematics, Oberlin College, Oberlin, OH 44074, USA
2 Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
3 Department of Mathematics, University of Georgia, Athens, GA 30602, USA
@article{CRMATH_2017__355_11_1121_0,
     author = {Benjamin Linowitz and D.B. McReynolds and Paul Pollack and Lola Thompson},
     title = {Bounded gaps between primes and the length spectra of arithmetic hyperbolic 3-orbifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1121--1126},
     publisher = {Elsevier},
     volume = {355},
     number = {11},
     year = {2017},
     doi = {10.1016/j.crma.2017.07.002},
     language = {en},
}
TY  - JOUR
AU  - Benjamin Linowitz
AU  - D.B. McReynolds
AU  - Paul Pollack
AU  - Lola Thompson
TI  - Bounded gaps between primes and the length spectra of arithmetic hyperbolic 3-orbifolds
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1121
EP  - 1126
VL  - 355
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2017.07.002
LA  - en
ID  - CRMATH_2017__355_11_1121_0
ER  - 
%0 Journal Article
%A Benjamin Linowitz
%A D.B. McReynolds
%A Paul Pollack
%A Lola Thompson
%T Bounded gaps between primes and the length spectra of arithmetic hyperbolic 3-orbifolds
%J Comptes Rendus. Mathématique
%D 2017
%P 1121-1126
%V 355
%N 11
%I Elsevier
%R 10.1016/j.crma.2017.07.002
%G en
%F CRMATH_2017__355_11_1121_0
Benjamin Linowitz; D.B. McReynolds; Paul Pollack; Lola Thompson. Bounded gaps between primes and the length spectra of arithmetic hyperbolic 3-orbifolds. Comptes Rendus. Mathématique, Volume 355 (2017) no. 11, pp. 1121-1126. doi : 10.1016/j.crma.2017.07.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.07.002/

[1] A. Borel Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 8 (1981) no. 1, pp. 1-33 (MR 616899)

[2] T. Chinburg; E. Friedman An embedding theorem for quaternion algebras, J. Lond. Math. Soc. (2), Volume 60 (1999) no. 1, pp. 33-44 (MR 1721813)

[3] T. Chinburg; E. Hamilton; D.D. Long; A.W. Reid Geodesics and commensurability classes of arithmetic hyperbolic 3-manifolds, Duke Math. J., Volume 145 (2008) no. 1, pp. 25-44 (MR 2451288)

[4] D. Futer; C. Millichap Spectrally similar incommensurable 3-manifolds, Proc. Lond. Math. Soc., Volume 115 (2017) no. 2, pp. 411-447

[5] S. Garibaldi Outer automorphisms of algebraic groups and determining groups by their maximal tori, Mich. Math. J., Volume 61 (2012) no. 2, pp. 227-237 (MR 2944477)

[6] G.J. Janusz Algebraic Number Fields, Grad. Stud. Math., vol. 7, American Mathematical Society, Providence, RI, USA, 1996 (MR MR1362545)

[7] B. Linowitz Counting problems for geodesics on arithmetic hyperbolic surfaces, Proc. Amer. Math. Soc. (2017) (in press) | DOI

[8] B. Linowitz; D.B. McReynolds; P. Pollack; L. Thompson Counting and effective rigidity in algebra and geometry (preprint, available at) | arXiv

[9] C. Maclachlan; A.W. Reid The Arithmetic of Hyperbolic 3-Manifolds, Grad. Texts Math., vol. 219, Springer-Verlag, New York, 2003 (MR 1937957)

[10] J. Maynard Small gaps between primes, Ann. of Math. (2), Volume 181 (2015), pp. 383-413 (MR 3272929)

[11] C. Millichap Mutations and short geodesics in hyperbolic 3-manifolds, Commun. Anal. Geom., Volume 25 (2017) no. 3, pp. 625-683

[12] G. Prasad; A.S. Rapinchuk Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math. Inst. Hautes Études Sci., Volume 109 (2009) no. 1, pp. 113-184 (MR 2511587)

[13] A.W. Reid Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds, Duke Math. J., Volume 65 (1992) no. 2, pp. 215-228 (MR 1150584)

[14] A.W. Reid Traces, lengths, axes and commensurability, Ann. Fac. Sci. Toulouse Math. (6), Volume 23 (2014) no. 5, pp. 1103-1118 (MR 3294604)

[15] T. Sunada Riemannian coverings and isospectral manifolds, Ann. of Math. (2), Volume 121 (1985) no. 1, pp. 169-186 (MR 782558)

[16] J. Thorner Bounded gaps between primes in Chebotarev sets, Res. Math. Sci., Volume 1 (2014) (16 pages)

[17] M.F. Vignéras Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2), Volume 112 (1980) no. 1, pp. 21-32 (MR 584073)

[18] Y. Zhang Bounded gaps between primes, Ann. of Math. (2), Volume 179 (2014), pp. 1121-1174 (MR 3171761)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Homology and K-theory of the Bianchi groups

Alexander D. Rahm

C. R. Math (2011)


Almost commensurability of 3-dimensional Anosov flows

Pierre Dehornoy

C. R. Math (2013)


On the genus of a division algebra

Vladimir I. Chernousov; Andrei S. Rapinchuk; Igor A. Rapinchuk

C. R. Math (2012)