[Intersection d'espaces de Dirichlet à poids harmonique]
En 1991, S. Richter a introduit les espaces de Dirichlet à poids harmonique, motivé par l'étude des 2-isométries analytiques. Dans cet article, on considère une intersection d'espaces , où est l'espace des mesures de probabilité boréliennes. On donne plusieurs caractérisations de en termes de théorie des fonctions. On montre également que se compare dans les deux sens par des relations d'inclusion strictes avec certains espaces de fonctions analytiques Lipschitz et que peut être considéré comme le cas extrême des espaces de Morrey analytiques en un certain sens.
In 1991, S. Richter introduced harmonically weighted Dirichlet spaces , motivated by his study of cyclic analytic two-isometries. In this paper, we consider , the intersection of spaces, where is the family of Borel probability measures. Several function-theoretic characterizations of the Banach space are given. We also show that is located strictly between some classical analytic Lipschitz spaces and can be regarded as the endpoint case of analytic Morrey spaces in some sense.
Accepté le :
Publié le :
Guanlong Bao 1 ; Nihat Gökhan Göğüş 2 ; Stamatis Pouliasis 2
@article{CRMATH_2017__355_8_859_0, author = {Guanlong Bao and Nihat G\"okhan G\"o\u{g}\"u\c{s} and Stamatis Pouliasis}, title = {Intersection of harmonically weighted {Dirichlet} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {859--865}, publisher = {Elsevier}, volume = {355}, number = {8}, year = {2017}, doi = {10.1016/j.crma.2017.07.013}, language = {en}, }
TY - JOUR AU - Guanlong Bao AU - Nihat Gökhan Göğüş AU - Stamatis Pouliasis TI - Intersection of harmonically weighted Dirichlet spaces JO - Comptes Rendus. Mathématique PY - 2017 SP - 859 EP - 865 VL - 355 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2017.07.013 LA - en ID - CRMATH_2017__355_8_859_0 ER -
Guanlong Bao; Nihat Gökhan Göğüş; Stamatis Pouliasis. Intersection of harmonically weighted Dirichlet spaces. Comptes Rendus. Mathématique, Volume 355 (2017) no. 8, pp. 859-865. doi : 10.1016/j.crma.2017.07.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.07.013/
[1] Analytic functions of bounded mean oscillation (D.A. Brannan; J.G. Clunie, eds.), Aspects of Contemporary Complex Analysis, Academic Press, London, New York, 1980, pp. 3-36
[2] Theory of Spaces, Academic Press, New York, 1970
[3] A Primer on the Dirichlet Space, Cambridge Tracts in Mathematics, vol. 203, Cambridge University Press, 2014
[4] Some properties of fractional integrals II, Math. Z., Volume 34 (1932), pp. 403-439
[5] Projective limits of Poletsky–Stessin Hardy spaces, Complex Anal. Oper. Theory, Volume 10 (2016) no. 5, pp. 1001-1016
[6] (Banach Cent. Publ.), Volume vol. 107, Institute of Mathematics of the Polish Academy of Sciences, Warsaw (2015), pp. 195-204
[7] A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc., Volume 328 (1991), pp. 325-349
[8] A formula for the local Dirichlet integral, Mich. Math. J., Volume 38 (1991), pp. 355-379
[9] Multipliers and invariant subspaces in the Dirichlet space, J. Oper. Theory, Volume 28 (1992), pp. 167-186
[10] spaces and Morrey spaces, J. Funct. Anal., Volume 201 (2003), pp. 282-297
[11] On the coefficients of α-Bloch functions, Math. Montisnigri, Volume 3 (1994), pp. 45-57
[12] Geometric Functions, Birkhäuser Verlag, Basel–Boston–Berlin, 2006
[13] Composition operators between analytic Campanato spaces, J. Geom. Anal., Volume 24 (2014), pp. 649-666
[14] Operator Theory in Function Spaces, American Mathematical Society, Providence, RI, 2007
Cité par Sources :
Commentaires - Politique