Comptes Rendus
Functional analysis
Positive block matrices and numerical ranges
[Matrices par blocs positives et images numériques]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1077-1081.

Toute matrice positive partitionnée en quatre blocs de même taille satisfait l'inégalité en norme unitairement invariante MM1,1+M2,2+ωI, où ω est la largeur de l'image numérique de M1,2.

Any positive matrix M partitioned in four n-by-n blocks satisfies the unitarily invariant norm inequality MM1,1+M2,2+ωI, where ω is the width of the numerical range of M1,2. Some related inequalities and a reverse Lidskii majorization are given.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.10.006

Jean-Christophe Bourin 1 ; Antoine Mhanna 2

1 Laboratoire de mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR 6623, 16, route de Gray, 25030 Besançon, France
2 Kfardebian, Lebanon
@article{CRMATH_2017__355_10_1077_0,
     author = {Jean-Christophe Bourin and Antoine Mhanna},
     title = {Positive block matrices and numerical ranges},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1077--1081},
     publisher = {Elsevier},
     volume = {355},
     number = {10},
     year = {2017},
     doi = {10.1016/j.crma.2017.10.006},
     language = {en},
}
TY  - JOUR
AU  - Jean-Christophe Bourin
AU  - Antoine Mhanna
TI  - Positive block matrices and numerical ranges
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 1077
EP  - 1081
VL  - 355
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2017.10.006
LA  - en
ID  - CRMATH_2017__355_10_1077_0
ER  - 
%0 Journal Article
%A Jean-Christophe Bourin
%A Antoine Mhanna
%T Positive block matrices and numerical ranges
%J Comptes Rendus. Mathématique
%D 2017
%P 1077-1081
%V 355
%N 10
%I Elsevier
%R 10.1016/j.crma.2017.10.006
%G en
%F CRMATH_2017__355_10_1077_0
Jean-Christophe Bourin; Antoine Mhanna. Positive block matrices and numerical ranges. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1077-1081. doi : 10.1016/j.crma.2017.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.006/

[1] R. Bhatia Matrix Analysis, Graduate Texts in Mathematics, Springer, New York, 1996

[2] J.-C. Bourin; E.-Y. Lee Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc., Volume 44 (2012) no. 6, pp. 1085-1102

[3] J.-C. Bourin; E.-Y. Lee; M. Lin On a decomposition lemma for positive semi-definite block-matrices, Linear Algebra Appl., Volume 437 (2012), pp. 1906-1912

[4] H. Du; C.-K. Li; K.-Z. Wang; Y. Wang; N. Zuo Numerical ranges of the product of operators, Oper. Matrices, Volume 11 (2017) no. 1, pp. 171-180

[5] T. Hiroshima Majorization criterion for distillability of a bipartite quantum state, Phys. Rev. Lett., Volume 91 (2003) no. 5

[6] F. Kittaneh Norm inequalities for certain operator sums, J. Funct. Anal., Volume 143 (1997), pp. 337-348

[7] F. Kittaneh Norm inequalities for commutators of positive operators and applications, Math. Z., Volume 258 (2008), pp. 845-849

[8] H. Klaja The numerical range and the spectrum of a product of two orthogonal projections, J. Math. Anal. Appl., Volume 411 (2014), pp. 177-195

[9] M. Lin; H. Wolwowicz Hiroshima's theorem and matrix norm inequalities, Acta Sci. Math. (Szeged), Volume 81 (2015) no. 1–2, pp. 45-53

[10] A. Mhanna On symmetric norm inequalities and positive definite block-matrices, Math. Inequal. Appl. (2017) (in press)

Cité par Sources :

Commentaires - Politique