[Matrices par blocs positives et images numériques]
Toute matrice positive partitionnée en quatre blocs de même taille satisfait l'inégalité en norme unitairement invariante , où ω est la largeur de l'image numérique de .
Any positive matrix M partitioned in four n-by-n blocks satisfies the unitarily invariant norm inequality , where ω is the width of the numerical range of . Some related inequalities and a reverse Lidskii majorization are given.
Accepté le :
Publié le :
Jean-Christophe Bourin 1 ; Antoine Mhanna 2
@article{CRMATH_2017__355_10_1077_0, author = {Jean-Christophe Bourin and Antoine Mhanna}, title = {Positive block matrices and numerical ranges}, journal = {Comptes Rendus. Math\'ematique}, pages = {1077--1081}, publisher = {Elsevier}, volume = {355}, number = {10}, year = {2017}, doi = {10.1016/j.crma.2017.10.006}, language = {en}, }
Jean-Christophe Bourin; Antoine Mhanna. Positive block matrices and numerical ranges. Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1077-1081. doi : 10.1016/j.crma.2017.10.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.10.006/
[1] Matrix Analysis, Graduate Texts in Mathematics, Springer, New York, 1996
[2] Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc., Volume 44 (2012) no. 6, pp. 1085-1102
[3] On a decomposition lemma for positive semi-definite block-matrices, Linear Algebra Appl., Volume 437 (2012), pp. 1906-1912
[4] Numerical ranges of the product of operators, Oper. Matrices, Volume 11 (2017) no. 1, pp. 171-180
[5] Majorization criterion for distillability of a bipartite quantum state, Phys. Rev. Lett., Volume 91 (2003) no. 5
[6] Norm inequalities for certain operator sums, J. Funct. Anal., Volume 143 (1997), pp. 337-348
[7] Norm inequalities for commutators of positive operators and applications, Math. Z., Volume 258 (2008), pp. 845-849
[8] The numerical range and the spectrum of a product of two orthogonal projections, J. Math. Anal. Appl., Volume 411 (2014), pp. 177-195
[9] Hiroshima's theorem and matrix norm inequalities, Acta Sci. Math. (Szeged), Volume 81 (2015) no. 1–2, pp. 45-53
[10] On symmetric norm inequalities and positive definite block-matrices, Math. Inequal. Appl. (2017) (in press)
Cité par Sources :
Commentaires - Politique