Let K be a noncyclotomic CM field. We show that the field has a reciprocal unit-primitive element when K does. Also, we prove some related conditions that make the converse of this assertion true.
Soit K un corps CM non cyclotomique. On montre que, si K admet une unité réciproque primitive, il en est de même pour le corps . On prouve également des conditions qui rendent vraie l'inverse de cette proposition.
Accepted:
Published online:
Cornelius Greither 1; Toufik Zaïmi 2
@article{CRMATH_2018__356_1_8_0,
author = {Cornelius Greither and Toufik Za{\"\i}mi},
title = {CM fields with a reciprocal unit-primitive element},
journal = {Comptes Rendus. Math\'ematique},
pages = {8--12},
year = {2018},
publisher = {Elsevier},
volume = {356},
number = {1},
doi = {10.1016/j.crma.2017.11.014},
language = {en},
}
Cornelius Greither; Toufik Zaïmi. CM fields with a reciprocal unit-primitive element. Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 8-12. doi: 10.1016/j.crma.2017.11.014
[1] C. Batut, D. Bernardi, H. Cohen, M. Olivier, User's Guide to PARI-GP, Version 2.5.1, 2012.
[2] Complex Pisot numbers in algebraic number fields, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015), pp. 965-967
[3] A note on the characterization of CM-fields, J. Aust. Math. Soc., Volume 26 (1978), pp. 26-30
[4] CM fields without unit-primitive elements, Bull. Aust. Math. Soc., Volume 96 (2017), pp. 398-399
[5] Problèmes de Galois et nombres algébriques réciproques, Université Paris-6, 2000 (thèse de doctorat)
[6] Cyclotomic Fields II, Springer-Verlag, New York, 2012
[7] On number fields without unit primitive elements, Bull. Aust. Math. Soc., Volume 93 (2016), pp. 420-432
[8] A note on number fields having reciprocal integer generators, Quaest. Math., Volume 40 (2017), pp. 391-394
Cited by Sources:
Comments - Policy
