In this note, we investigate the existence of frames of exponentials for in the setting of LCA groups. Our main result shows that sub-multitiling properties of with respect to a uniform lattice Γ of guarantee the existence of a frame of exponentials with frequencies in a finite number of translates of the annihilator of Γ. We also prove the converse of this result and provide conditions for the existence of these frames. These conditions extend recent results on Riesz bases of exponentials and multitilings to frames.
Dans cette note, nous étudions l'existence de trames d'exponentielles pour dans le cadre des groupes abéliens localement compacts. Notre résultat principal montre que les propriétés de sous-multipavage de par rapport à un réseau Γ de garantissent l'existence d'une trame d'exponentielles dont les fréquences appartiennent à une union finie de translatés de l'annulateur de Γ. On prouve aussi la réciproque de ce résultat et on donne des conditions pour l'existence de ces trames. Ces conditions étendent des résultats récents sur les bases de Riesz d'exponentielles et les multipavages au cadre des trames.
Accepted:
Published online:
Davide Barbieri 1; Carlos Cabrelli 2; Eugenio Hernández 1; Peter Luthy 3; Ursula Molter 2; Carolina Mosquera 2
@article{CRMATH_2018__356_1_107_0, author = {Davide Barbieri and Carlos Cabrelli and Eugenio Hern\'andez and Peter Luthy and Ursula Molter and Carolina Mosquera}, title = {Frames of exponentials and sub-multitiles in {LCA} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {107--113}, publisher = {Elsevier}, volume = {356}, number = {1}, year = {2018}, doi = {10.1016/j.crma.2017.12.002}, language = {en}, }
TY - JOUR AU - Davide Barbieri AU - Carlos Cabrelli AU - Eugenio Hernández AU - Peter Luthy AU - Ursula Molter AU - Carolina Mosquera TI - Frames of exponentials and sub-multitiles in LCA groups JO - Comptes Rendus. Mathématique PY - 2018 SP - 107 EP - 113 VL - 356 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2017.12.002 LA - en ID - CRMATH_2018__356_1_107_0 ER -
%0 Journal Article %A Davide Barbieri %A Carlos Cabrelli %A Eugenio Hernández %A Peter Luthy %A Ursula Molter %A Carolina Mosquera %T Frames of exponentials and sub-multitiles in LCA groups %J Comptes Rendus. Mathématique %D 2018 %P 107-113 %V 356 %N 1 %I Elsevier %R 10.1016/j.crma.2017.12.002 %G en %F CRMATH_2018__356_1_107_0
Davide Barbieri; Carlos Cabrelli; Eugenio Hernández; Peter Luthy; Ursula Molter; Carolina Mosquera. Frames of exponentials and sub-multitiles in LCA groups. Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 107-113. doi : 10.1016/j.crma.2017.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.12.002/
[1] Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups, Adv. Math., Volume 285 (2015), pp. 454-477
[2] Lattice sub-tilings and frames in LCA groups, C. R. Acad. Sci. Paris, Ser. I, Volume 356 (2017) no. 2, pp. 193-199
[3] Shift-invariant spaces on LCA groups, J. Funct. Anal., Volume 258 (2010) no. 6, pp. 2034-2059
[4] Existence of Borel transversals in groups, Pac. J. Math., Volume 25 (1968), pp. 455-461
[5] Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal., Volume 16 (1974), pp. 101-121
[6] Multi-tiling and Riesz basis, Adv. Math., Volume 252 (2014) no. 15, pp. 1-6
[7] Frames for Undergraduates, Student Mathematical Library, vol. 40, American Mathematical Society, 2007
[8] Abstract Harmonic Analysis, Vol. I, Structure of Topological Groups, Integration Theory, Group Representations, Springer, 1979
[9] Multiple lattice tiles and Riesz bases of exponentials, Proc. Amer. Math. Soc., Volume 143 (2015), pp. 741-747
[10] Spectral theory of commuting self-adjoint partial differential operators, J. Funct. Anal., Volume 73 (1987), pp. 122-134
[11] Introduction to Nonharmonic Fourier Series, Academic Press, 1980
Cited by Sources:
Comments - Policy