The b-chromatic number of a graph G is the largest integer k such that G admits a proper coloring with k colors for which each color class contains a vertex that has at least one neighbor in all the other color classes. A graph G is called -critical if the contraction of any edge e of G decreases the b-chromatic number of G. The purpose of this paper is the characterization of all -critical trees.
Le nombre b-chromatique d'un graphe G est le plus grand entier k tel que G admette une coloration propre avec k couleurs, pour laquelle toute classe de couleur contient un sommet qui a au moins un voisin dans toutes les autres classes de couleur. Un graphe G est appelé -critique si la contraction de toute arête e de G fait diminuer le nombre b-chromatique de G. Le but de cet article est la caractérisation de tous les arbres -critiques.
Accepted:
Published online:
Amel Bendali-Braham 1; Noureddine Ikhlef-Eschouf 2; Mostafa Blidia 3
@article{CRMATH_2018__356_2_115_0, author = {Amel Bendali-Braham and Noureddine Ikhlef-Eschouf and Mostafa Blidia}, title = {A characterization of \protect\emph{b}\protect\textsubscript{\protect\emph{e}}-critical trees}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--120}, publisher = {Elsevier}, volume = {356}, number = {2}, year = {2018}, doi = {10.1016/j.crma.2018.01.006}, language = {en}, }
Amel Bendali-Braham; Noureddine Ikhlef-Eschouf; Mostafa Blidia. A characterization of be-critical trees. Comptes Rendus. Mathématique, Volume 356 (2018) no. 2, pp. 115-120. doi : 10.1016/j.crma.2018.01.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.01.006/
[1] A characterization of edge b-critical graphs, Discrete Appl. Math. (2018) | DOI
[2] Graphs, North Holland, 1985
[3] On vertex b-critical trees, Opusc. Math., Volume 33 (2013) no. 1, pp. 19-28
[4] Characterization of some b-chromatic edge b-critical graphs, Australas. J. Comb., Volume 47 (2010), pp. 21-35
[5] On b-vertex and b-edge critical graphs, Opusc. Math., Volume 35 (2015) no. 2, pp. 171-180
[6] On edge b-critical graphs, Discrete Appl. Math., Volume 180 (2015), pp. 176-180
[7] The b-chromatic number of a graph, Discrete Appl. Math., Volume 91 (1999), pp. 127-141
[8] The b-chromatic number and related topics—a survey, Discrete Appl. Math., Volume 235 (2018), pp. 184-201
[9] On the b-chromatic number of graphs, Lecture Notes in Comput. Sci., vol. 2573, 2002, pp. 310-320
[10] Minimaximal and Maximinimal Optimization Problems: a Partial Order-Based Approach, Department of Computing Science, University of Glasgow, UK, 1998 (PhD thesis, technical report tr-1998-27)
Cited by Sources:
Comments - Policy