We introduce the -extended τ-hypergeometric and confluent hypergeometric functions along with their integral representations. We also present closed integral expressions for the Mathieu-type a-series and for the associated alternating versions whose terms contain the -extended τ-hypergeometric functions with related contiguous functional relations.
Nous introduisons les fonctions τ-hypergéométriques et hypergéométriques confluentes -étendues, avec leurs représentations intégrales. Nous présentons également des formules intégrales closes pour les a-séries de type Mathieu et les versions alternées associées, dont les termes contiennent les fonctions τ-hypergéométriques -étendues, avec les relations fonctionnelles de contiguïté.
Accepted:
Published online:
Rakesh K. Parmar 1; Tibor K. Pogány 2, 3; Ram K. Saxena 4
@article{CRMATH_2018__356_3_278_0, author = {Rakesh K. Parmar and Tibor K. Pog\'any and Ram K. Saxena}, title = {On properties and applications of (\protect\emph{p},\protect\emph{q})-extended \protect\emph{\ensuremath{\tau}}-hypergeometric functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {278--282}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2017.12.014}, language = {en}, }
TY - JOUR AU - Rakesh K. Parmar AU - Tibor K. Pogány AU - Ram K. Saxena TI - On properties and applications of (p,q)-extended τ-hypergeometric functions JO - Comptes Rendus. Mathématique PY - 2018 SP - 278 EP - 282 VL - 356 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2017.12.014 LA - en ID - CRMATH_2018__356_3_278_0 ER -
Rakesh K. Parmar; Tibor K. Pogány; Ram K. Saxena. On properties and applications of (p,q)-extended τ-hypergeometric functions. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 278-282. doi : 10.1016/j.crma.2017.12.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.12.014/
[1] Sur la fonction de Riemann et sur des fontions analogues, Ann. Sci. Éc. Norm. Supér. (4), Volume 11 (1894), pp. 75-164
[2] Extension of Euler's Beta function, J. Comput. Appl. Math., Volume 78 (1997), pp. 19-32
[3] Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., Volume 159 (2004), pp. 589-602
[4] On a Class of Incomplete Gamma Functions with Applications, CRC Press (Chapman and Hall), Boca Raton, FL, USA, 2002
[5] Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J., Volume 36 (2014) no. 2, pp. 339-367
[6] Mathieu-type series built by -extended Gaussian hypergeometric function, Bull. Korean Math. Soc., Volume 54 (2017) no. 3, pp. 789-797
[7] Further results on generalized hypergeometric functions, Appl. Math. Comput., Volume 136 (2003), pp. 17-25
[8] The General Theory of Dirichlet's Series, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 18, Cambridge University Press, London, Edinburgh, UK, 1915
[9] -extended Bessel and modified Bessel functions of the first kind, Results Math., Volume 72 (2017) no. 1–2, pp. 617-632
[10] On extended Hurwitz–Lerch zeta function, J. Math. Anal. Appl., Volume 448 (2017), pp. 1281-1304
[11] Extended τ-hypergeometric functions and associated properties, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 5, pp. 421-426
[12] Integral representation of a series which includes the Mathieu a-series, J. Math. Anal. Appl., Volume 296 (2004), pp. 309-313
[13] Integral representation of Mathieu -series, Integral Transforms Spec. Funct., Volume 16 (2005) no. 8, pp. 685-689
[14] Integral expressions of Mathieu-type series whose terms contain Fox's H-function, Appl. Math. Lett., Volume 20 (2007), pp. 764-769
[15] Some Mathieu-type series associated with the Fox–Wright function, Comput. Math. Appl., Volume 57 (2009) no. 1, pp. 127-140
[16] On Mathieu-type series whose terms contain generalized hypergeometric function and Meijer's G-function, Math. Comput. Model., Volume 47 (2008) no. 9–10, pp. 952-969
[17] Some families of Mathieu a-series and alternating Mathieu a-series, Appl. Math. Comput., Volume 173 (2006) no. 1, pp. 69-108
[18] A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms (3), Volume 1 (2012), pp. 238-258
[19] On some generalizations of the functions of hypergeometric type, Fract. Calc. Appl. Anal., Volume 2 (1999), pp. 233-244
[20] Some results on a generalized hypergeometric function, Integral Transforms Spec. Funct., Volume 12 (2001) no. 1, pp. 89-100
Cited by Sources:
Comments - Policy