We study the projective logarithmic potential of a probability measure μ on the complex projective space . We prove that the range of the operator is contained in the (local) domain of definition of the complex Monge–Ampère operator acting on the class of quasi-plurisubharmonic functions on with respect to the Fubini–Study metric. Moreover, when the measure μ has no atom, we show that the complex Monge–Ampère measure of its logarithmic potential is an absolutely continuous measure with respect to the Fubini–Study volume form on .
On étudie le potentiel logarithmique projectif d'une mesure de probabilité μ sur l'espace projectif complexe . On établit que l'image de l'opérateur est contenue dans le domaine de définition (local) de l'opérateur de Monge–Ampère complexe agissant sur les fonctions quasi-plurisousharmoniques dans par rapport à la métrique de Fubini–Study. Si μ n'a pas d'atomes, on montre que la mesure de Monge–Ampère complexe du potentiel logarithmique de μ est absolument continue par rapport à la forme volume de Fubini–Study de .
Accepted:
Published online:
Fatima Zahra Assila 1
@article{CRMATH_2018__356_3_283_0, author = {Fatima Zahra Assila}, title = {Logarithmic potentials on $ {\mathbb{P}}^{n}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {283--287}, publisher = {Elsevier}, volume = {356}, number = {3}, year = {2018}, doi = {10.1016/j.crma.2018.02.004}, language = {en}, }
Fatima Zahra Assila. Logarithmic potentials on $ {\mathbb{P}}^{n}$. Comptes Rendus. Mathématique, Volume 356 (2018) no. 3, pp. 283-287. doi : 10.1016/j.crma.2018.02.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.02.004/
[1] The Dirichlet problem for the complex Monge–Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44
[2] On the definition of the Monge–Ampère operator in , Math. Ann., Volume 328 (2004) no. 3, pp. 415-423
[3] The domain of definition of the complex Monge–Ampère operator, Amer. J. Math., Volume 128 (2006) no. 2, pp. 519-530
[4] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262
[5] Potentials in pluripotential theory, Ann. Fac. Sci. Toulouse Math. (6), Volume 8 (1999) no. 3, pp. 439-469
[6] Leçons sur la géometrie projective complexe, Gauthier-Villars, 1950
[7] The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 1, pp. 159-179
[8] Domains of definition of Monge–Ampère operator on compact Kähler manifolds, Math. Z., Volume 259 (2008) no. 2, pp. 393-418
[9] Monge–Ampère operators, Lelong numbers and intersection theory (V. Ancona; A. Silva, eds.), Complex Analysis and Geometry, The University Series in Mathematics, Plenum Press, New York, 1993
[10] Geometric Measure Theory, Springer Verlag, 1996
[11] The Radon transform on Euclidean spaces, two point homogeneous spaces and Grassmann manifolds, Acta Math., Volume 113 (1965), pp. 153-180
[12] The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482
[13] Degenerate Complex Monge–Ampère Equations, EMS Tracts Math, vol. 26, 2017
[14] Constructive polynomial approximation on spheres and projective spaces, Trans. Amer. Math. Soc., Volume 162 (1971), pp. 157-170
[15] Kürzeste Wege im komplexen Gebiet, Math. Ann., Volume 60 (1905), pp. 321-378
Cited by Sources:
Comments - Policy