We overview our work [7–11,6] defining and studying normal crossings varieties and subvarieties in symplectic topology. This work answers a question of Gromov on the feasibility of introducing singular (sub)varieties into symplectic topology in the case of normal crossings singularities. It also provides a necessary and sufficient condition for smoothing normal crossings symplectic varieties. In addition, we explain some connections with other areas of mathematics and discuss a few directions for further research.
Nous résumons nos travaux [7–11,6], où l'on définit et étudie les variétés et sous-variétés à croisements normaux en géométrie symplectique. Ils répondent à une question de Gromov sur la possibilité d'introduire de telles (sous-)variétés singuliéres en topologie symplectique, dans le cas de singularités à croisements normaux. Nous donnons également une condition nécessaire et suffisante pour lisser ces variétés symplectiques à croisements normaux. De plus, nous expliquons les liens avec d'autres domaines mathématiques et discutons quelques directions pour de futures recherches.
Accepted:
Published online:
Mohammad F. Tehrani 1; Mark McLean 2; Aleksey Zinger 2
@article{CRMATH_2018__356_4_420_0, author = {Mohammad F. Tehrani and Mark McLean and Aleksey Zinger}, title = {Singularities and semistable degenerations for symplectic topology}, journal = {Comptes Rendus. Math\'ematique}, pages = {420--432}, publisher = {Elsevier}, volume = {356}, number = {4}, year = {2018}, doi = {10.1016/j.crma.2018.02.009}, language = {en}, }
TY - JOUR AU - Mohammad F. Tehrani AU - Mark McLean AU - Aleksey Zinger TI - Singularities and semistable degenerations for symplectic topology JO - Comptes Rendus. Mathématique PY - 2018 SP - 420 EP - 432 VL - 356 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2018.02.009 LA - en ID - CRMATH_2018__356_4_420_0 ER -
Mohammad F. Tehrani; Mark McLean; Aleksey Zinger. Singularities and semistable degenerations for symplectic topology. Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 420-432. doi : 10.1016/j.crma.2018.02.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.02.009/
[1] Stable logarithmic maps to Deligne–Faltings pairs II, Asian J. Math., Volume 18 (2014) no. 3, pp. 465-488
[2] Decomposition of degenerate Gromov–Witten invariants | arXiv
[3] On twistor spaces of the class , J. Differ. Geom., Volume 33 (1991) no. 2, pp. 541-549
[4] Lectures on Symplectic Geometry, Lect. Notes Math., vol. 1764, Springer-Verlag, 2001 (revised 2006)
[5] Symplectic submanifolds and almost-complex geometry, J. Differ. Geom., Volume 44 (1996) no. 4, pp. 666-705
[6] M. Farajzadeh Tehrani, A. Zinger, On the multifold symplectic sum and cut constructions, work in progress.
[7] Normal crossings singularities for symplectic topology | arXiv
[8] The smoothability of normal crossings symplectic varieties | arXiv
[9] M. Farajzadeh-Tehrani, M. McLean, A. Zinger, Normal crossings singularities for symplectic topology, II, in preparation.
[10] M. Farajzadeh-Tehrani, M. McLean, A. Zinger, The smoothability of normal crossings symplectic varieties, II, in preparation.
[11] Normal crossings degenerations of symplectic manifolds | arXiv
[12] Global smoothings of varieties with normal crossings, Ann. of Math. (2), Volume 118 (1983) no. 1, pp. 75-114
[13] A new construction of symplectic manifolds, Ann. of Math., Volume 142 (1995) no. 3, pp. 527-595
[14] Partial Differential Relations, Springer-Verlag, 1986
[15] Affine manifolds, log structures, and mirror symmetry, Turk. J. Math., Volume 27 (2003) no. 1, pp. 33-60
[16] Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc., Volume 26 (2013) no. 2, pp. 451-510
[17] Relative Gromov–Witten invariants, Ann. of Math. (2), Volume 157 (2003) no. 1, pp. 45-96
[18] Symplectic cuts, Math. Res. Lett., Volume 2 (1995) no. 3, pp. 247-258
[19] A degeneration formula for GW-invariants, J. Differ. Geom., Volume 60 (2002) no. 1, pp. 199-293
[20] Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3-folds, Invent. Math., Volume 145 (2001) no. 1, pp. 151-218
[21] Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, Topics in Symplectic 4-Manifolds, First Int. Press Lect. Ser., I, International Press, 1998, pp. 47-83
[22] Symplectic normal connect sum, Topology, Volume 33 (1994) no. 4, pp. 729-764
[23] Introduction to Symplectic Topology, Oxford University Press, 1998
[24] J-Holomorphic Curves and Symplectic Topology, Colloq. Publ., vol. 52, AMS, 2012
[25] The growth rate of symplectic homology and affine varieties, Geom. Funct. Anal., Volume 22 (2012) no. 2, pp. 369-442
[26] Reeb orbits and the minimal discrepancy of an isolated singularity, Invent. Math., Volume 204 (2016) no. 2, pp. 505-594
[27] Compactifications of moduli spaces inspired by mirror symmetry | arXiv
[28] Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2), Volume 65 (1957) no. 3, pp. 391-404
[29] Exploded fibrations, Proceedings of Gokova Geometry–Topology Conference 2006, 2007, pp. 52-90
[30] Gromov–Witten invariants of exploded manifolds | arXiv
[31] Gluing formula for Gromov–Witten invariants in a triple product | arXiv
[32] Some examples of non-smoothable varieties with normal crossings, Duke Math. J., Volume 50 (1983) no. 2, pp. 477-486
[33] Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space, Invent. Math., Volume 199 (2015) no. 1, pp. 1-186
[34] New Constructions of Symplectic Four-Manifolds, Stanford University, Stanford, CA, USA, 1996 (Ph.D. Thesis)
[35] A new symplectic surgery: the 3-fold sum, Topol. Appl., Volume 88 (1998) no. 1, pp. 27-53
[36] (Curr. Dev. Math.), International Press (1995), pp. 361-401
[37] Non-Kähler Calabi–Yau manifolds, Proc. Symp. Pure Math., Volume 85 (2011), pp. 241-254
Cited by Sources:
Comments - Policy