[Heteroscedasticity test when the covariables are functionals]
We present in this paper a consistent nonparametric test for heteroscedasticity when data are of functional kind. The latter is constructed by evaluating the difference between the conditional and unconditional variances. We show the asymptotic normality of the statistical test under the null hypothesis. In addition, we prove that this test is consistent against all deviations from homoscedasticity condition.
Dans cette note, nous construisons et étudions un test non paramétrique de détection de l'hétéroscédasticité quand les covariables sont fonctionnelles. Ce dernier est construit en évaluant la différence entre la variance conditionnelle et la variance inconditionnelle. Nous montrons la normalité asymptotique de cette statistique de test sous l'hypothèse nulle. En outre, nous prouvons que ce test est également robuste contre toutes les déviations possibles à l'homoscédasticité.
Accepted:
Published online:
Aicha Henien 1; Larbi Ait-Hennani 2; Jacques Demongeot 3; Ali Laksaci 4; Mustapha Rachdi 3
@article{CRMATH_2018__356_5_571_0, author = {Aicha Henien and Larbi Ait-Hennani and Jacques Demongeot and Ali Laksaci and Mustapha Rachdi}, title = {Test d'h\'et\'erosc\'edasticit\'e quand les covariables sont fonctionnelles}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--574}, publisher = {Elsevier}, volume = {356}, number = {5}, year = {2018}, doi = {10.1016/j.crma.2018.02.010}, language = {fr}, }
TY - JOUR AU - Aicha Henien AU - Larbi Ait-Hennani AU - Jacques Demongeot AU - Ali Laksaci AU - Mustapha Rachdi TI - Test d'hétéroscédasticité quand les covariables sont fonctionnelles JO - Comptes Rendus. Mathématique PY - 2018 SP - 571 EP - 574 VL - 356 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2018.02.010 LA - fr ID - CRMATH_2018__356_5_571_0 ER -
%0 Journal Article %A Aicha Henien %A Larbi Ait-Hennani %A Jacques Demongeot %A Ali Laksaci %A Mustapha Rachdi %T Test d'hétéroscédasticité quand les covariables sont fonctionnelles %J Comptes Rendus. Mathématique %D 2018 %P 571-574 %V 356 %N 5 %I Elsevier %R 10.1016/j.crma.2018.02.010 %G fr %F CRMATH_2018__356_5_571_0
Aicha Henien; Larbi Ait-Hennani; Jacques Demongeot; Ali Laksaci; Mustapha Rachdi. Test d'hétéroscédasticité quand les covariables sont fonctionnelles. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 571-574. doi : 10.1016/j.crma.2018.02.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.02.010/
[1] A simple test for heteroscedasticity and random coefficient variation, Econometrica, Volume 47 (1979), pp. 1287-1294
[2] Testing heteroscedasticity in nonparametric regression, J. R. Stat. Soc. B, Volume 60 (1998), pp. 693-708
[3] Nonparametric Functional Data Analysis. Theory and Practice, Springer-Verlag, New York, 2006
[4] An introduction to recent advances in high/infinite dimensional statistics, J. Multivar. Anal., Volume 146 (2016), pp. 1-6
[5] Theoretical foundations of functional data analysis, with an introduction to linear operators, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester, UK, 2015
[6] Functional Data Analysis, Springer Series in Statistics, Springer, New York, 2005
[7] Testing heteroscedasticity in nonlinear and nonparametric regressions, Can. J. Stat., Volume 37 (2009), pp. 282-300
Cited by Sources:
Comments - Policy