The coefficients of Linear Recurrent Relations (LRR) play a pivotal role in many forecasting techniques. Precise and closed form of the LRR coefficients enables one to achieve more accurate forecasts. On account to the fact that, in real-world situations, a time series data is contaminated with noise, extracting the noiseless series is of great importance. This paper seeks to obtain a closed form, with less noise level, of LRR coefficients for noisy exponential time series. Improving the filtering performance through employing noiseless eigenvectors of the covariance matrix is another novelty of this study. Our simulation results confirm that the proposed approach enhances filtering and forecasting results.
Les coefficients des relations récurrentes linéaires (RRL) jouent un rôle central dans beaucoup de techniques de prévision. Une formule exacte et close des coefficients d'une RRL permet d'obtenir des prévisions plus précises. Prenant en compte le fait que, dans la réalité, une suite temporelle de données est contaminée par du bruit, il est très important de pouvoir en extraire la série sans bruit. Ce texte vise à obtenir une forme close, avec un niveau de bruit moindre, des coefficients d'une RRL, pour les suites en temps exponentiel avec bruit. Une autre nouveauté de notre approche est l'amélioration de l'efficacité du filtrage par l'utilisation de vecteurs propres sans bruit de la matrice de covariance. Les résultats des simulations confirment que l'approche proposée améliore le filtrage et les prévisions.
Accepted:
Published online:
Hossein Hassani 1; Mahdi Kalantari 2
@article{CRMATH_2018__356_5_563_0, author = {Hossein Hassani and Mahdi Kalantari}, title = {A novel signal extraction approach for filtering and forecasting noisy exponential series}, journal = {Comptes Rendus. Math\'ematique}, pages = {563--570}, publisher = {Elsevier}, volume = {356}, number = {5}, year = {2018}, doi = {10.1016/j.crma.2018.03.006}, language = {en}, }
TY - JOUR AU - Hossein Hassani AU - Mahdi Kalantari TI - A novel signal extraction approach for filtering and forecasting noisy exponential series JO - Comptes Rendus. Mathématique PY - 2018 SP - 563 EP - 570 VL - 356 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2018.03.006 LA - en ID - CRMATH_2018__356_5_563_0 ER -
Hossein Hassani; Mahdi Kalantari. A novel signal extraction approach for filtering and forecasting noisy exponential series. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 563-570. doi : 10.1016/j.crma.2018.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.03.006/
[1] A new approach for selecting the number of the eigen values in singular spectrum analysis, J. Franklin Inst., Volume 353 (2016), pp. 1-16
[2] Real-time nowcasting the US output gap: singular spectrum analysis at work, Int. J. Forecast., Volume 33 (2017) no. 1, pp. 185-198
[3] Singular spectrum analysis for modeling seasonal signals from GPS time series, J. Geodyn., Volume 72 (2013), pp. 25-35
[4] Nonlinear Time Series Models in Empirical Finance, Cambridge University Press, 2013
[5] Bicoid signal extraction with a selection of parametric and nonparametric signal processing techniques, Genomics Proteomics Bioinform., Volume 13 (2015) no. 3, pp. 183-191
[6] Singular Spectrum Analysis for Time Series, Springer Briefs in Statistics, Springer, 2013
[7] Singular spectrum analysis based on the minimum variance estimator, Nonlinear Anal., Real World Appl., Volume 11 (2010), pp. 2065-2077
[8] Singular spectrum analysis based on the perturbation theory, Nonlinear Anal., Real World Appl., Volume 12 (2011) no. 5, pp. 2752-2766
[9] Tourist arrivals using optimal singular spectrum analysis, Tour. Manag., Volume 46 (2015), pp. 322-335
[10] Optimizing bicoid signal extraction, Math. Biosci., Volume 294 (2017), pp. 46-56
[11] Periodicity of carbon element distribution along casting direction in continuous-casting billet by using singular spectrum analysis, Metall. Mater. Trans. B, Volume 45 (2014) no. 5, pp. 1817-1826
[12] Singular spectrum analysis based on -norm, Fluct. Noise Lett., Volume 15 (2016) no. 1
[13] Singular spectrum analysis for enhancing the sensitivity in structural damage detection, J. Sound Vib., Volume 333 (2014) no. 2, pp. 392-417
[14] Missing value imputation in time series using singular spectrum analysis, Int. J. Energy Stat., Volume 4 (2016) no. 1
[15] EXSSA: SSA-based reconstruction of time series via exponential smoothing of covariance eigenvalues, Int. J. Forecast., Volume 33 (2017) no. 1, pp. 214-229
[16] Singular spectrum analysis for image processing, Stat. Interface, Volume 3 (2010), pp. 419-426
[17] Singular Spectrum Analysis of Biomedical Signals, Taylor & Francis, CRC Press, Boca Raton, FL, USA, 2016
[18] On the use of singular spectrum analysis for forecasting U.S. trade before, during and after the 2008 recession, Int. Econ., Volume 141 (2015), pp. 34-49
[19] Applied Nonlinear Time Series Analysis, Applications in Physics, Physiology and Finance, World Scientific, 2005
[20] Analysis of Financial Time Series, John Wiley & Sons, 2010
[21] A Guide to Modern Econometrics, John Wiley & Sons, 2004
[22] Selection of window length for singular spectrum analysis, J. Franklin Inst., Volume 352 (2015), pp. 1541-1560
[23] Estimating multi-country prosperity index: a two-dimensional singular spectrum analysis approach, J. Syst. Sci. Complex., Volume 27 (2014), pp. 56-74
Cited by Sources:
Comments - Policy