[Sur la structure Calderón–Zygmund du noyau de Petermichl]
We show that Petermichl's dyadic operator
Nous démontrons que l'opérateur dyadique de Petermichl
Accepté le :
Publié le :
Hugo Aimar 1 ; Ivana Gómez 1
@article{CRMATH_2018__356_5_509_0, author = {Hugo Aimar and Ivana G\'omez}, title = {On the {Calder\'on{\textendash}Zygmund} structure of {Petermichl's} kernel}, journal = {Comptes Rendus. Math\'ematique}, pages = {509--516}, publisher = {Elsevier}, volume = {356}, number = {5}, year = {2018}, doi = {10.1016/j.crma.2018.04.002}, language = {en}, }
Hugo Aimar; Ivana Gómez. On the Calderón–Zygmund structure of Petermichl's kernel. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 509-516. doi : 10.1016/j.crma.2018.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.002/
[1] Integrales singulares y aproximaciones de la identidad en espacios de tipo homogéneo, Universidad Nacional de Buenos Aires, PEMA–INTEC, 1983 http://www.imal.santafe-conicet.gov.ar/TesisIMAL/tesisAimarH.pdf (Doctoral thesis Available in:)
[2] Singular integrals and approximate identities on spaces of homogeneous type, Transl. Amer. Math. Soc., Volume 292 (1985) no. 1, pp. 135-153 (MR805957)
[3] Weighted norm inequalities for the Hardy–Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc., Volume 91 (1984) no. 2, pp. 213-216 (MR740173)
[4] Analyse harmonique non-commutative sur certains espaces homogènes : Étude de certaines intégrales singulières, Lecture Notes in Mathematics, vol. 242, Springer-Verlag, Berlin–New York, 1971 (MR0499948)
[5] A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math., Volume 33 (1979) no. 3, pp. 271-309 (MR546296)
[6] Lipschitz functions on spaces of homogeneous type, Adv. Math., Volume 33 (1979) no. 3, pp. 257-270 (MR546295)
[7] Wavelets – Calderón – Zygmund and Multilinear Operators, Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge, UK, 1997 (translated from the 1990 and 1991 French originals by David Salinger, MR1456993)
[8] Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000) no. 6, pp. 455-460 (MR1756958)
Cité par Sources :
☆ This work was supported by CONICET (grant PIP-112-2011010-0877, 2012); ANPCyT-MINCyT (grants PICT-2568, 2012; PICT-3631, 2015); and UNL (grant CAID-50120110100371LI, 2013).
Commentaires - Politique