[De la conjecture de Faulhuber et Steinerberger sur la dérivée logarithmique de ϑ4]
Faulhuber et Steinerberger ont conjecturé que la dérivée logarithmique de
Faulhuber and Steinerberger conjectured that the logarithmic derivative of
Accepté le :
Publié le :
Anne-Maria Ernvall-Hytönen 1 ; Esa V. Vesalainen 1
@article{CRMATH_2018__356_5_457_0, author = {Anne-Maria Ernvall-Hyt\"onen and Esa V. Vesalainen}, title = {On a conjecture of {Faulhuber} and {Steinerberger} on the logarithmic derivative of \protect\emph{\ensuremath{\vartheta}}\protect\textsubscript{4}}, journal = {Comptes Rendus. Math\'ematique}, pages = {457--462}, publisher = {Elsevier}, volume = {356}, number = {5}, year = {2018}, doi = {10.1016/j.crma.2018.04.006}, language = {en}, }
TY - JOUR AU - Anne-Maria Ernvall-Hytönen AU - Esa V. Vesalainen TI - On a conjecture of Faulhuber and Steinerberger on the logarithmic derivative of ϑ4 JO - Comptes Rendus. Mathématique PY - 2018 SP - 457 EP - 462 VL - 356 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2018.04.006 LA - en ID - CRMATH_2018__356_5_457_0 ER -
Anne-Maria Ernvall-Hytönen; Esa V. Vesalainen. On a conjecture of Faulhuber and Steinerberger on the logarithmic derivative of ϑ4. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 457-462. doi : 10.1016/j.crma.2018.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.006/
[1] On the log-concavity of a Jacobi theta function, Math. Comput., Volume 82 (2013), pp. 2265-2272
[2] Convexity of quotients of theta functions, J. Math. Anal. Appl., Volume 386 (2012), pp. 319-331
[3] On the secrecy gain of ℓ-modular lattices | arXiv
[4] Extremal Bounds of Gaussian Gabor Frames and Properties of Jacobi's Theta Functions, University of Vienna, 2016 (Doctoral dissertation)
[5] Properties of logarithmic derivatives of Jacobi's theta functions on a logarithmic scale | arXiv
[6] Optimal Gabor frame bounds for separable lattices and estimates for Jacobi theta functions, J. Math. Anal. Appl., Volume 445 (2017), pp. 407-422
[7] Minimal theta functions, Glasg. Math. J., Volume 30 (1988), pp. 75-85
[8] Some new properties of Jacobi theta functions, J. Comput. Appl. Math., Volume 178 (2005), pp. 419-424
[9] Harmonic measure of radial segments and symmetrization, Sb. Math., Volume 189 (1998), pp. 1701-1718
- Extremal determinants of Laplace–Beltrami operators for rectangular tori, Mathematische Zeitschrift, Volume 297 (2021) no. 1-2, p. 175 | DOI:10.1007/s00209-020-02507-7
Cité par 1 document. Sources : Crossref
☆ This work was supported by the Academy of Finland project 303820, and E. V. V. was supported by the Magnus Ehrnrooth Foundation.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier