Comptes Rendus
Essential dimension of finite groups in prime characteristic
Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 463-467.

Let F be a field of characteristic p>0 and G be a smooth finite algebraic group over F. We compute the essential dimension edF(G;p) of G at p. That is, we show that


Soit F un corps de caractéristique p>0, et soit G un groupe algébrique fini étale sur F. On calcule la dimension essentielle de G en p, que l'on note edF(G;p). Plus précisément, on démontre que


Published online:
DOI: 10.1016/j.crma.2018.03.013

Zinovy Reichstein 1; Angelo Vistoli 2

1 Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada
2 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
     author = {Zinovy Reichstein and Angelo Vistoli},
     title = {Essential dimension of finite groups in prime characteristic},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {463--467},
     publisher = {Elsevier},
     volume = {356},
     number = {5},
     year = {2018},
     doi = {10.1016/j.crma.2018.03.013},
     language = {en},
AU  - Zinovy Reichstein
AU  - Angelo Vistoli
TI  - Essential dimension of finite groups in prime characteristic
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 463
EP  - 467
VL  - 356
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2018.03.013
LA  - en
ID  - CRMATH_2018__356_5_463_0
ER  - 
%0 Journal Article
%A Zinovy Reichstein
%A Angelo Vistoli
%T Essential dimension of finite groups in prime characteristic
%J Comptes Rendus. Mathématique
%D 2018
%P 463-467
%V 356
%N 5
%I Elsevier
%R 10.1016/j.crma.2018.03.013
%G en
%F CRMATH_2018__356_5_463_0
Zinovy Reichstein; Angelo Vistoli. Essential dimension of finite groups in prime characteristic. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 463-467. doi : 10.1016/j.crma.2018.03.013.

[1] F.M. Bleher; T. Chinburg; B. Poonen; P. Symonds Automorphisms of Harbater–Katz–Gabber curves, Math. Ann., Volume 368 (2017) no. 1–2, pp. 811-836 (MR3651589)

[2] A. Borel; T.A. Springer Rationality properties of linear algebraic groups. II, Tohoku Math. J. (2), Volume 20 (1968), pp. 443-497 (MR0244259)

[3] R. Camina Subgroups of the Nottingham group, J. Algebra, Volume 196 (1997) no. 1, pp. 101-113 (MR1474165)

[4] V. Chernousov; P. Gille; Z. Reichstein Resolving G-torsors by abelian base extensions, J. Algebra, Volume 296 (2006) no. 2, pp. 561-581 (MR2201056)

[5] V. Chernousov; P. Gille; Z. Reichstein Reduction of structure for torsors over semilocal rings, Manuscr. Math., Volume 126 (2008) no. 4, pp. 465-480 (MR2425436)

[6] A. Duncan; Z. Reichstein Versality of algebraic group actions and rational points on twisted varieties, J. Algebraic Geom., Volume 24 (2015) no. 3, pp. 499-530 (MR3344763)

[7] M. Florence; Z. Reichstein The rationality problem for forms of moduli spaces of stable marked curves of positive genus | arXiv

[8] A. Grothendieck Torsion homologique et sections rationnelles, Anneaux de Chow et Applications, Séminaire Claude-Chevalley, vol. 3, 1958, pp. 1-29 (exposé 5)

[9] D. Harbater Moduli of p-covers of curves, Commun. Algebra, Volume 8 (1980) no. 12, pp. 1095-1122 (MR0579791)

[10] N.A. Karpenko; A.S. Merkurjev Essential dimension of finite p-groups, Invent. Math., Volume 172 (2008) no. 3, pp. 491-508 (MR2393078)

[11] N.M. Katz Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier (Grenoble), Volume 36 (1986) no. 4, pp. 69-106 (MR0867916)

[12] A. Ledet On the essential dimension of p-groups, Galois Theory and Modular Forms, Dev. Math., vol. 11, Kluwer Academic Publishers, Boston, MA, USA, 2004, pp. 159-172 (MR2059762)

[13] A. Ledet Finite groups of essential dimension one, J. Algebra, Volume 311 (2007) no. 1, pp. 31-37 (MR2309876)

[14] R. Lötscher; M. MacDonald; A. Meyer; Z. Reichstein Essential p-dimension of algebraic groups whose connected component is a torus, Algebra Number Theory, Volume 7 (2013) no. 8, pp. 1817-1840 (MR3134035)

[15] A.S. Merkurjev Essential dimension, Quadratic Forms—Algebra, Arithmetic, and Geometry, Contemp. Math., vol. 493, American Mathematical Society, Providence, RI, USA, 2009, pp. 299-325 (MR2537108)

[16] A.S. Merkurjev Essential dimension: a survey, Transform. Groups, Volume 18 (2013) no. 2, pp. 415-481

[17] A. Meyer; Z. Reichstein The essential dimension of the normalizer of a maximal torus in the projective linear group, Algebra Number Theory, Volume 3 (2009) no. 4, pp. 467-487

[18] A. Meyer; Z. Reichstein Some consequences of the Karpenko–Merkurjev theorem, Doc. Math. (2010), pp. 445-457 (MR2804261)

[19] Z. Reichstein Essential dimension, Proceedings of the International Congress of Mathematicians, Vol. II, Hindustan Book Agency, New Delhi, 2010, pp. 162-188

[20] D.J.S. Robinson A Course in the Theory of Groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996 (MR1357169)

[21] J.-P. Serre Galois Cohomology, Springer-Verlag, Berlin, 1997 (translated from the French by Patrick Ion and revised by the author MR1466966)

[22] J.-P. Serre Sous-groupes finis des groupes de Lie, Astérisque, Volume 266 (2000), pp. 415-430 (Exp. No. 864, 5. MR1772682)

[23] J.-P. Serre Cohomological invariants, Witt invariants, and trace forms, Cohomological Invariants in Galois Cohomology, Univ. Lecture Ser., vol. 28, American Mathematical Society, Providence, RI, USA, 2003, pp. 1-100 (Notes by Skip Garibaldi)

[24] R. Steinberg Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math., Volume 25 (1965), pp. 49-80 (MR0180554)

[25] D. Tossici; A. Vistoli On the essential dimension of infinitesimal group schemes, Amer. J. Math., Volume 135 (2013) no. 1, pp. 103-114 (MR3022958)

Cited by Sources:

The authors are grateful to the Collaborative Research Group in Geometric and Cohomological Methods in Algebra at the Pacific Institute for the Mathematical Sciences for their support of this project.

Comments - Policy