[Sur la solution forte globale du problème de Cauchy pour l'écoulement d'un cristal liquide nématique bidimensionnel, dépendant de la densité et avec vide]
Dans Li–Liu–Zhong (Nonlinearity 30 (2017) 4062–4088), les auteurs démontrent l'existence d'une unique solution forte globale au problème de Cauchy pour l'écoulement d'un cristal liquide nématique, incompressible, non homogène, bidimensionnel, avec vide. Ce résultat est valide dans la mesure où la densité initiale donnée et le gradient de dérive d'orientation ne sont pas trop lents à l'infini et l'énergie de base est petite. Le but de la présente Note est d'expliciter précisément cette dernière condition de petitesse.
In Li–Liu–Zhong (Nonlinearity 30 (2017) 4062–4088), the authors proved the existence of a unique global strong solution to the Cauchy problem of 2D nonhomogeneous incompressible nematic liquid crystal flows with vacuum as far-field density provided the initial data density and the gradient of orientation decay not too slow at infinity, and the basic energy is small. In this note, we aim at precisely describing this smallness condition.
Accepté le :
Publié le :
Xin Zhong 1
@article{CRMATH_2018__356_5_503_0, author = {Xin Zhong}, title = {A note on a global strong solution to the {2D} {Cauchy} problem of density-dependent nematic liquid crystal flows with vacuum}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--508}, publisher = {Elsevier}, volume = {356}, number = {5}, year = {2018}, doi = {10.1016/j.crma.2018.04.011}, language = {en}, }
TY - JOUR AU - Xin Zhong TI - A note on a global strong solution to the 2D Cauchy problem of density-dependent nematic liquid crystal flows with vacuum JO - Comptes Rendus. Mathématique PY - 2018 SP - 503 EP - 508 VL - 356 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2018.04.011 LA - en ID - CRMATH_2018__356_5_503_0 ER -
Xin Zhong. A note on a global strong solution to the 2D Cauchy problem of density-dependent nematic liquid crystal flows with vacuum. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 503-508. doi : 10.1016/j.crma.2018.04.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.04.011/
[1] Hydrostatic theory of liquid crystal, Arch. Ration. Mech. Anal., Volume 9 (1962), pp. 371-378
[2] Theory of flow phenomenum in liquid crystals, The Theory of Liquid Crystals, vol. 4, Academic Press, London–New York, 1979, pp. 1-81
[3] Global strong solutions to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, Nonlinearity, Volume 30 (2017), pp. 4062-4088
[4] Global strong solution to the density-dependent incompressible flow of liquid crystals, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 2301-2338
[5] Liquid crystal flow in two dimensions, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 297-336
[6] Global existence of weak solutions of the nematic liquid crystal flow in dimensions three, Commun. Pure Appl. Math., Volume 69 (2016), pp. 1532-1571
[7] Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows with vacuum, J. Differ. Equ., Volume 261 (2016), pp. 6521-6569
Cité par Sources :
☆ Supported by the Postdoctoral Science Foundation of Chongqing (No. xm2017015), China Postdoctoral Science Foundation (No. 2017M610579), Fundamental Research Funds for the Central Universities (No. XDJK2017C050), and the Doctoral Fund of Southwest University (No. SWU116033).
Commentaires - Politique