For a path of length , if for all , we multiply the n-th term of the signature by , we say that the resulting signature is ‘normalised’. It has been established (T. J. Lyons, M. Caruana, T. Lévy, Differential equations driven by rough paths, Springer, 2007) that the norm of the n-th term of the normalised signature of a bounded-variation path is bounded above by 1. In this article, we discuss the super-multiplicativity of the norm of the signature of a path with finite length, and prove by Fekete's lemma the existence of a non-zero limit of the n-th root of the norm of the n-th term in the normalised signature as n approaches infinity.
Pour une trajectoire de longueur , si l'on multiplie le n-ième terme de la signature par pour tout , la signature ainsi obtenue est dite « normalisée ». Il a été établi (T. J. Lyons, M. Caruana, T. Lévy, Differential equations driven by rough paths, Springer, 2007) que la norme du n-ième terme de la signature normalisée d'une trajectoire à variation bornée est majorée par 1. Dans cet article, nous étudions la super-multiplicativité de la norme de la signature d'une trajectoire de longueur finie, et nous démontrons, à l'aide du lemme de Fekete, l'existence d'une limite non nulle lorsque n tend l'infini pour la racine n-ième de la norme du n-ième terme de la signature normalisée.
Accepted:
Published online:
Jiawei Chang 1; Terry Lyons 1, 2; Hao Ni 3, 2
@article{CRMATH_2018__356_7_720_0, author = {Jiawei Chang and Terry Lyons and Hao Ni}, title = {Super-multiplicativity and a lower bound for the decay of the signature of a path of finite length}, journal = {Comptes Rendus. Math\'ematique}, pages = {720--724}, publisher = {Elsevier}, volume = {356}, number = {7}, year = {2018}, doi = {10.1016/j.crma.2018.05.010}, language = {en}, }
TY - JOUR AU - Jiawei Chang AU - Terry Lyons AU - Hao Ni TI - Super-multiplicativity and a lower bound for the decay of the signature of a path of finite length JO - Comptes Rendus. Mathématique PY - 2018 SP - 720 EP - 724 VL - 356 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2018.05.010 LA - en ID - CRMATH_2018__356_7_720_0 ER -
%0 Journal Article %A Jiawei Chang %A Terry Lyons %A Hao Ni %T Super-multiplicativity and a lower bound for the decay of the signature of a path of finite length %J Comptes Rendus. Mathématique %D 2018 %P 720-724 %V 356 %N 7 %I Elsevier %R 10.1016/j.crma.2018.05.010 %G en %F CRMATH_2018__356_7_720_0
Jiawei Chang; Terry Lyons; Hao Ni. Super-multiplicativity and a lower bound for the decay of the signature of a path of finite length. Comptes Rendus. Mathématique, Volume 356 (2018) no. 7, pp. 720-724. doi : 10.1016/j.crma.2018.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.05.010/
[1] Tensor products of operator spaces, J. Funct. Anal., Volume 99 (1991) no. 2, pp. 262-292
[2] Uniqueness for the signature of a path of bounded variation and the reduced path group, Ann. of Math. (2), Volume 171 (2010) no. 1, pp. 109-167
[3] Differential Equations Driven by Rough Paths, Springer, 2007
[4] Introduction to Tensor Products of Banach Spaces, Springer Science & Business Media, 2013
[5] Probability Theory and Combinatorial Optimization, vol. 69, Society for Industrial and Applied Mathematics (SIAM), 1997
Cited by Sources:
Comments - Policy