Comptes Rendus
Harmonic analysis/Ordinary differential equations
Solutions of a class of multiplicatively advanced differential equations
[Solutions d'une classe d'équations différentielles multiplicativement avancées]
Comptes Rendus. Mathématique, Volume 356 (2018) no. 7, pp. 776-817.

Des équations différentielles multiplicativement avancées (MADE) de la forme f(n)(t)=αf(βt) avec α0, β>1 sont étudiées dans le cadre des solutions de type fμ,λ(t) définies sur [0,). Pour λQ+,μR, les solutions fμ,λ(t) sont prolongées sur (,) d'une manière non unique pour obtenir des solutions ondelettes dans l'espace de Schwartz Fμ,λ(t) de l'originale MADE, avec tous les moments de Fμ,λ(t) nuls. Des exemples sont étudiés en détail. La transformée de Fourier de chaque Fμ,λ(t) est calculée et, dans un certain nombre d'exemples, est liée à la fonction thêta de Jacobi. Des conditions supplémentaires suffisantes pour l'unicité de la solution de certaines MADE avec condition initiale sont données. Les conditions de décroissance et de non-décroissance à −∞ sont obtenues. Les taux de décroissance à ±∞ en termes de fonctions familières sont établis.

The multiplicatively advanced differential equations (MADEs) of form f(n)(t)=αf(βt) with α0, β>1 are studied along with a class of their solutions of type fμ,λ(t) defined on [0,). For λQ+,μR, the solutions fμ,λ(t) are extended to (,) in a non-unique manner to obtain Schwartz wavelet solutions Fμ,λ(t) of the original MADE, with all moments of Fμ,λ(t) vanishing. Examples are studied in detail. The Fourier transform of each Fμ,λ(t) is computed and, in a number of examples, is related to the Jacobi theta function. Additional conditions sufficient for the uniqueness of certain MADE initial value problems are given. Conditions for decay and non-decay at −∞ are obtained. Decay rates at ±∞ in terms of familiar functions are established.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.05.011
David W. Pravica 1, 2 ; Njinasoa Randriampiry 1 ; Michael J. Spurr 1, 2

1 Department of Mathematics, East Carolina University, Greenville, NC, USA
2 School of Mathematics, University of the Witwatersrand, Johannesburg, South Africa
@article{CRMATH_2018__356_7_776_0,
     author = {David W. Pravica and Njinasoa Randriampiry and Michael J. Spurr},
     title = {Solutions of a class of multiplicatively advanced differential equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {776--817},
     publisher = {Elsevier},
     volume = {356},
     number = {7},
     year = {2018},
     doi = {10.1016/j.crma.2018.05.011},
     language = {en},
}
TY  - JOUR
AU  - David W. Pravica
AU  - Njinasoa Randriampiry
AU  - Michael J. Spurr
TI  - Solutions of a class of multiplicatively advanced differential equations
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 776
EP  - 817
VL  - 356
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2018.05.011
LA  - en
ID  - CRMATH_2018__356_7_776_0
ER  - 
%0 Journal Article
%A David W. Pravica
%A Njinasoa Randriampiry
%A Michael J. Spurr
%T Solutions of a class of multiplicatively advanced differential equations
%J Comptes Rendus. Mathématique
%D 2018
%P 776-817
%V 356
%N 7
%I Elsevier
%R 10.1016/j.crma.2018.05.011
%G en
%F CRMATH_2018__356_7_776_0
David W. Pravica; Njinasoa Randriampiry; Michael J. Spurr. Solutions of a class of multiplicatively advanced differential equations. Comptes Rendus. Mathématique, Volume 356 (2018) no. 7, pp. 776-817. doi : 10.1016/j.crma.2018.05.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.05.011/

[1] L. Amerio Almost-periodic functions and functional equations, Boll. Unione Mat. Ital. (3), Volume 20 (1965), pp. 287-334

[2] S. Bochner Beitrage zur Theorie der fastperiodischen Funktionen, Math. Ann., Volume 96 (1926), pp. 119-147

[3] H. Bohr Zur Theorie der fastperiodischen Funktionen I, Acta Math., Volume 45 (1925), pp. 29-127

[4] M. Brownik Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., Volume 164 (2003) no. 781

[5] O. Costin; M. Huang Behavior of lacunary series at the natural boundary, Adv. Math., Volume 222 (2009), pp. 1370-1404

[6] I. Daubechies Ten Lectures on Wavelets, CBMS–NSF Regional Conference Series in Applied Mathematics, vol. 61, SIAM, Philadelphia, PA, USA, 1992

[7] N.T. Dung Asymptotic behavior of linear advanced differential equations, Acta Math. Sci., Volume 35 (2015) no. 3, pp. 610-618

[8] S.W. Goode Differential Equations and Linear Algebra, Prentice Hall, Upper Saddle River, NJ, USA, 2000

[9] G.H. Hardy; N. Riesz The General Theory of Dirichlet's Series, Cambridge University Press, Cambridge, UK, 1915

[10] S. Krantz Handbook of Complex Variables, Birkhäuser, 1951

[11] A. Lastra; S. Malek On q-Gevrey asymptotics for singularly perturbed q-difference-differential problems with an irregular singularity, Abstr. Appl. Anal., Volume 2012 (2012)

[12] A. Lastra; S. Malek On parametric Gevrey asymptotics for singularly perturbed partial differential equations with delays, Abstr. Appl. Anal., Volume 2013 (2013)

[13] A. Lastra; S. Malek Parametric Gevrey asymptotics for some Cauchy problems in quasiperiodic function spaces, Abstr. Appl. Anal., Volume 2014 (2014)

[14] A. Lastra; S. Malek On parametric multilevel q-Gevrey asymptotics for some linear q-difference-differential equations, Adv. Differ. Equ., Volume 2015 (2015)

[15] A. Lastra; S. Malek On multiscale Gevrey and q-Gevrey asymptotics for some linear q-difference differential initial value Cauchy problems, J. Differ. Equ. Appl., Volume 23 (2017) no. 8, pp. 1397-1457

[16] A. Lastra; S. Malek; J. Sanz On q-asymptotics for linear q-difference-differential equations with Fuchsian and irregular singularities, J. Differ. Equ., Volume 252 (2012) no. 10, pp. 5185-5216

[17] A. Lastra; S. Malek; J. Sanz Gevrey solutions of threefold singular nonlinear partial differential equations, J. Differ. Equ., Volume 255 (2013) no. 10, pp. 3205-3232

[18] S. Malek On complex singularity analysis for linear partial q-difference-differential equations using nonlinear differential equations, J. Dyn. Control Syst., Volume 19 (2013) no. 1, pp. 69-93

[19] Y. Meyer Wavelets and Operators, Cambridge University Press, Cambridge, UK, 1992

[20] D. Pravica; M. Spurr Analytic continuation int the FUTURE, Discrete Contin. Dyn. Syst., Volume Suppl. Vol. 2002 (2002), pp. 709-716

[21] D. Pravica; M. Spurr Unique summing of formal power series solutions to advanced and delayed differential equations, Discrete Contin. Dyn. Syst., Volume Suppl. Vol. 2005 (2005), pp. 730-737

[22] D. Pravica; N. Randriampiry; M. Spurr Applications of an advanced differential equation in the study of wavelets, Appl. Comput. Harmon. Anal., Volume 27 (2009), pp. 2-11

[23] D. Pravica; N. Randriampiry; M. Spurr Theta function identities in the study of wavelets satisfying advanced differential equations, Appl. Comput. Harmon. Anal., Volume 29 (2010), pp. 134-155

[24] D. Pravica; N. Randriampiry; M. Spurr Reproducing kernel bounds for an advanced wavelet frame via the theta function, Appl. Comput. Harmon. Anal., Volume 33 (2012) no. 1, pp. 79-108

[25] D. Pravica; N. Randriampiry; M. Spurr q-Advanced models for tsunamis and rogue waves, Abstr. Appl. Anal., Volume 2012 (2012)

[26] D. Pravica; N. Randriampiry; M. Spurr Smooth wavelet approximations of truncated Legendre polynomials via the Jacobi theta function, Abstr. Appl. Anal., Volume 2014 (2014)

[27] D. Pravica; N. Randriampiry; M. Spurr On q-advanced spherical Bessel functions of the first kind and perturbations of the Haar wavelet, Appl. Comput. Harmon. Anal., Volume 44 (2018) no. 2, pp. 350-413

[28] W. Rudin Real and Complex Analysis, McGraw–Hill Series in Higher Mathematics, McGraw–Hill, New York, 1974

[29] C.-C. Tseng; S.-C. Pei; C.-C. Hsia Computation of fractional derivatives using Fourier transform and digital FIR differentiator, Signal Process., Volume 80 (2000), pp. 151-159

[30] C. Zhang Analytic continuation of solutions of the pantograph equation by means of θ-modular forms | arXiv

Cité par Sources :

Commentaires - Politique