Any positive matrix with each block square satisfies the symmetric norm inequality , where () are quantities involving the width of numerical ranges. This extends the main theorem of Bourin and Mhanna (2017) [4] to a higher number of blocks.
Toute matrice positive écrite en blocs carrés satisfait , où les quantités , , font intervenir la largeur du domaine des valeurs numériques. Ceci étend le théorème principal de Bourin, Mhanna (2017) [4] aux matrices écrites avec un nombre de blocs arbitraire.
Accepted:
Published online:
Minghua Lin 1
@article{CRMATH_2018__356_7_818_0, author = {Minghua Lin}, title = {A norm inequality for positive block matrices}, journal = {Comptes Rendus. Math\'ematique}, pages = {818--822}, publisher = {Elsevier}, volume = {356}, number = {7}, year = {2018}, doi = {10.1016/j.crma.2018.05.006}, language = {en}, }
Minghua Lin. A norm inequality for positive block matrices. Comptes Rendus. Mathématique, Volume 356 (2018) no. 7, pp. 818-822. doi : 10.1016/j.crma.2018.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.05.006/
[1] Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc., Volume 44 (2012), pp. 1085-1102
[2] Decomposition and partial trace of positive matrices with Hermitian blocks, Int. J. Math., Volume 24 (2013)
[3] On a decomposition lemma for positive semidefinite block matrices, Linear Algebra Appl., Volume 437 (2012), pp. 1906-1912
[4] Positive block matrices and numerical ranges, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017), pp. 1077-1081
[5] Positive semi-definite block matrices and norm inequalities, Linear Algebra Appl., Volume 551 (2018), pp. 83-91
[6] Majorization criterion for distillability of a bipartite quantum state, Phys. Rev. Lett., Volume 91 (2003) no. 5
[7] Topics in Matrix Analysis, Cambridge University Press, 1991
[8] On symmetric norm inequalities and positive definite block-matrices, Math. Inequal. Appl., Volume 21 (2018), pp. 133-138
Cited by Sources:
Comments - Policy