Comptes Rendus
Partial differential equations/Functional analysis
Electromagnetic wave propagation in media consisting of dispersive metamaterials
[Propagation d'une onde électromagnétique dans un milieu constitué de métamatériaux dispersifs]
Comptes Rendus. Mathématique, Volume 356 (2018) no. 7, pp. 757-775.

Nous montrons que les équations de Maxwell dans un milieu constitué de métamatériaux dispersifs (dépendant de la fréquence) forment un problème bien posé, à vitesse de propagation finie et satisfaisant un résultat de régularité. Deux exemples typiques de tels métamatériaux sont les matériaux régis par les modèles de Drude et de Lorentz. La causalité et la passivité sont les deux hypothèses principales ; elles jouent un rôle essentiel dans l'analyse. Il vaut la peine de remarquer qu'en revanche, rien n'assure, en général, le caractère bien posé dans le domaine des fréquences. Nous présentons également quelques résultats numériques utilisant le modèle de Drude, afin d'illustrer le comportement dispersif.

We establish the well-posedness, the finite speed propagation, and a regularity result for Maxwell's equations in media consisting of dispersive (frequency dependent) metamaterials. Two typical examples for such metamaterials are materials obeying Drude's and Lorentz' models. The causality and the passivity are the two main assumptions and play a crucial role in the analysis. It is worth noting that by contrast the well-posedness in the frequency domain is not ensured in general. We also provide some numerical experiments using the Drude's model to illustrate its dispersive behaviour.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.05.012
Hoai-Minh Nguyen 1 ; Valentin Vinoles 1

1 Department of Mathematics, EPFL SB CAMA, Station 8, CH-1015 Lausanne, Switzerland
@article{CRMATH_2018__356_7_757_0,
     author = {Hoai-Minh Nguyen and Valentin Vinoles},
     title = {Electromagnetic wave propagation in media consisting of dispersive metamaterials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {757--775},
     publisher = {Elsevier},
     volume = {356},
     number = {7},
     year = {2018},
     doi = {10.1016/j.crma.2018.05.012},
     language = {en},
}
TY  - JOUR
AU  - Hoai-Minh Nguyen
AU  - Valentin Vinoles
TI  - Electromagnetic wave propagation in media consisting of dispersive metamaterials
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 757
EP  - 775
VL  - 356
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2018.05.012
LA  - en
ID  - CRMATH_2018__356_7_757_0
ER  - 
%0 Journal Article
%A Hoai-Minh Nguyen
%A Valentin Vinoles
%T Electromagnetic wave propagation in media consisting of dispersive metamaterials
%J Comptes Rendus. Mathématique
%D 2018
%P 757-775
%V 356
%N 7
%I Elsevier
%R 10.1016/j.crma.2018.05.012
%G en
%F CRMATH_2018__356_7_757_0
Hoai-Minh Nguyen; Valentin Vinoles. Electromagnetic wave propagation in media consisting of dispersive metamaterials. Comptes Rendus. Mathématique, Volume 356 (2018) no. 7, pp. 757-775. doi : 10.1016/j.crma.2018.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.05.012/

[1] É. Bécache; P. Joly; V. Vinoles On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials, 2016 | HAL

[2] A.S. Bonnet-Ben Dhia; L. Chesnel; P. Ciarlet T-coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM Math. Model. Numer. Anal., Volume 46 (2012), pp. 1363-1387

[3] E. Bonnetier; H.-M. Nguyen Superlensing using hyperbolic metamaterials: the scalar case, J. Éc. Polytech. Math., Volume 4 (2017), pp. 973-1003

[4] T.A. Burton Volterra Integral and Differential Equations, Mathematics in Science and Engineering, vol. 167, Academic Press, Inc., Orlando, FL, USA, 1983

[5] M. Cassier Étude de deux problèmes de propagation d'ondes, transitoires: 1) Focalisation spatio-temporelle en acoustique; 2) Transmission entre un diélectrique et un métamatériaux, Paris-Saclay University, 2016 (PhD thesis)

[6] M. Cassier; C. Hazard; P. Joly Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform | arXiv

[7] M. Cassier; P. Joly; M. Kachanovska Mathematical models for dispersive electromagnetic waves: an overview | arXiv

[8] M. Costabel; E. Stephan A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl., Volume 106 (1985), pp. 367-413

[9] R. Dautray; J.-L. Lions Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5. Evolutions Problems I, Springer Science & Business, Media, 1992

[10] L.C. Evans Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998

[11] A. Figotin; J.H. Schenker Spectral theory of time dispersive and dissipative systems, J. Stat. Phys., Volume 118 (2005), pp. 199-263

[12] B. Gralak; A. Tip Macroscopic Maxwell's equations and negative index materials, J. Math. Phys., Volume 51 (2010)

[13] F. Hecht New development in FreeFem++, J. Numer. Math., Volume 20 (2012), pp. 251-265

[14] J.D. Jackson Classical Electrodynamics, John Wiley & Sons, 1999

[15] Z. Jacob; L.V. Alekseyev; E. Narimanov Optical hyperlens: far-field imaging beyond the diffraction limit, Opt. Express, Volume 14 (2006), pp. 8247-8256

[16] J.A. Kong Theory of Electromagnetic Waves, Wiley–Interscience, New York, 1975

[17] Y. Lai; H. Chen; Z. Zhang; C.T. Chan Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett., Volume 102 (2009)

[18] L.D. Landau; E.M. Lifshitz Electrodynamics of Continuous Media, Pergamon Press, 1984

[19] Z. Liu; H. Lee; Y. Xiong; C. Sun; Z. Zhang Far-field optical hyperlens magnifying sub-diffraction-limited objects, Science, Volume 315 (2007), p. 1686

[20] T.G. Mackay Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific, 2010

[21] G.W. Milton; N.A. Nicorovici; R.C. McPhedran; V.A. Podolskiy A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. Lond. Ser. A, Volume 461 (2005), pp. 3999-4034

[22] G.W. Milton; N.A. Nicorovici On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A, Volume 462 (2006), pp. 3027-3059

[23] H-M. Nguyen Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 6581-6595

[24] H-M. Nguyen Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 1327-1365

[25] H-M. Nguyen Superlensing using complementary media, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015), pp. 471-484

[26] H-M. Nguyen Cloaking using complementary media in the quasistatic regime, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016), pp. 1509-1518

[27] H-M. Nguyen Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients, J. Math. Pures Appl., Volume 106 (2016), pp. 342-374

[28] H-M. Nguyen Superlensing using complementary media and reflecting complementary media for electromagnetic waves, Adv. Nonlinear Anal. (2017) | DOI

[29] H-M. Nguyen Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object: the acoustic case, SIAM J. Math. Anal., Volume 49 (2017), pp. 3208-3232

[30] H-M. Nguyen; L. Nguyen Generalized impedance boundary conditions for scattering by strongly absorbing obstacles for the full wave equation: the scalar case, Math. Models Methods Appl. Sci., Volume 25 (2015), pp. 1927-1960

[31] H-M. Nguyen; M.S. Vogelius Approximate cloaking for the full wave equation via change of variables: the Drude–Lorentz model, J. Math. Pures Appl., Volume 106 (2016), pp. 797-836

[32] N.A. Nicorovici; R.C. McPhedran; G.W. Milton Optical and dielectric properties of partially resonant composites, Phys. Rev. B, Volume 49 (1994), pp. 8479-8482

[33] H.M. Nussenzveig Causality and Dispersion Relations, Academic Press, New York, 1972

[34] P. Ola Remarks on a transmission problem, J. Math. Anal. Appl., Volume 196 (1995), pp. 639-658

[35] J.B. Pendry Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000), pp. 3966-3969

[36] J.B. Pendry Perfect cylindrical lenses, Opt. Express, Volume 1 (2003), pp. 755-760

[37] A. Poddubny; I. Iorsh; P. Belov; Y. Kivshar Hyperbolic metamaterials, Nat. Photonics, Volume 7 (2013), pp. 948-957

[38] S.A. Ramakrishna; J.B. Pendry Spherical perfect lens: solutions of Maxwell's equations for spherical geometry, Phys. Rev. B, Volume 69 (2004)

[39] R.A. Shelby; D.R. Smith; S. Schultz Experimental verification of a negative index of refraction, Science, Volume 292 (2001), pp. 77-79

[40] A.H. Sihvola Electromagnetic modeling of bi-isotropic media, Prog. Electromagn. Res., Volume 9 (1994), pp. 45-86

[41] A. Tip Linear absorptive dielectrics, Phys. Rev. A, Volume 57 (1998), p. 4818

[42] V.G. Veselago The electrodynamics of substances with simultaneously negative values of ε and μ, Usp. Fiz. Nauk, Volume 92 (1964), pp. 517-526

[43] V. Vinoles Problèmes d'interface en présence de métamatériaux: modélisation, analyse et simulations, Paris-Saclay University, 2016 (PhD thesis)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Negative index materials: at the frontier of macroscopic electromagnetism

Boris Gralak

C. R. Phys (2020)


Properties of waveguides filled with anisotropic metamaterials

Abhinav Bhardwaj; Dheeraj Pratap; Mitchell Semple; ...

C. R. Phys (2020)