[A q-deformation of the true-polyanalytic Bargmann transform]
We introduce a q-analog of the true-polyanalytic Bargmann transform on .
Nous introduisons une version q-deformée de la transformation de Bargmann vraie-polyanalytique sur .
Accepted:
Published online:
Sama Arjika 1; Othmane El Moize 2; Zouhaïr Mouayn 3
@article{CRMATH_2018__356_8_903_0, author = {Sama Arjika and Othmane El Moize and Zouha{\"\i}r Mouayn}, title = {Une \protect\emph{q}-d\'eformation de la transformation de {Bargmann} vraie-polyanalytique}, journal = {Comptes Rendus. Math\'ematique}, pages = {903--910}, publisher = {Elsevier}, volume = {356}, number = {8}, year = {2018}, doi = {10.1016/j.crma.2018.05.017}, language = {fr}, }
TY - JOUR AU - Sama Arjika AU - Othmane El Moize AU - Zouhaïr Mouayn TI - Une q-déformation de la transformation de Bargmann vraie-polyanalytique JO - Comptes Rendus. Mathématique PY - 2018 SP - 903 EP - 910 VL - 356 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2018.05.017 LA - fr ID - CRMATH_2018__356_8_903_0 ER -
Sama Arjika; Othmane El Moize; Zouhaïr Mouayn. Une q-déformation de la transformation de Bargmann vraie-polyanalytique. Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 903-910. doi : 10.1016/j.crma.2018.05.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.05.017/
[1] Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions, Appl. Comput. Harmon. Anal., Volume 29 (2010), pp. 287-302
[2] Function spaces of polyanalytic functions, Harmonic and Complex Analysis and Its Application, Birkhäuser, 2014, pp. 1-38
[3] Discrete coherent states for higher Landau levels, Ann. Phys., Volume 363 (2015), pp. 337-353
[4] Hilbert space of analytic function and generalized coherent states, J. Math. Phys., Volume 17 (1976) no. 4, pp. 524-527
[5] Theory of reproducing kernels, Trans. Amer. Math. Soc., Volume 68 (1950), pp. 337-404
[6] Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants, C. R. Acad. Sci. Paris, Ser. I, Volume 325 (1997) no. 7, pp. 707-712
[7] On a Hilbert space of analytic functions and an associated integral transform, Part I, Commun. Pure Appl. Math., Volume 14 (1961), pp. 174-187
[8] Harmonic Analyse on Phase Space, vol. 122, Princeton University Press, Princeton, NJ, États-Unis, 1989 (x+277 p)
[9] Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, vol. 96, Cambridge University Press, Cambridge, Royaume-Uni, 2004
[10] Coherent States in Quantum Physics, Wiley-VCH, Weinheim, Allemagne, 2009
[11] Bounds on the Segal–Bargmann transform of Lp functions, J. Fourier Anal. Appl., Volume 7 (2001) no. 6, pp. 553-569
[12] On some 2D orthogonal q-polynomials, Trans. Amer. Math. Soc., Volume 369 (2017) no. 10, pp. 6779-6821
[13] The combinatorics of q-Hermite polynomials and the Askey–Wilson integral, Eur. J. Comb., Volume 8 (1987) no. 4, pp. 379-392
[14] Complex multiple Wiener integral, Jpn. J. Math., Volume 22 (1952), pp. 63-86
[15] The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogues, Delft University of Technology, Delft, Pays-Bas, 1998
[16] Coherent state transforms attached to generalized Bargmann spaces on the complex plane, Math. Nachr., Volume 284 (2011) no. 14–15, pp. 1948-1954
[17] q-oscillator from the q-Hermite polynomial, Phys. Lett. B, Volume 663 (2008), pp. 141-145
[18] Non-standard orthogonality for the little q-Laguerre polynomials, Appl. Math. Lett., Volume 22 (2009), pp. 1745-1749
[19] H.M. Srivastava, A.K. Agarwal, Generating functions for a class of q-polynomials, DM-426-IR, septembre 1986.
[20] Coherent States, Wavelets and Their Generalizations, Springer Science+Business Media, New York, 2014
[21] Poly-Fock spaces, differential operators and related topics, Oper. Theory, Adv. Appl., Volume 117 (2000), pp. 371-386
Cited by Sources:
Comments - Policy