We prove two rigidity results for automorphism groups of the spaces of measured laminations on a closed orientable hyperbolic surface S and of projective measured laminations on this surface. The results concern the homeomorphisms of that preserve the geometric intersection between laminations and the homeomorphisms of that preserve the zero sets of these intersection functions.
On démontre deux résultats de rigidité pour des groupes d'automorphismes de l'espace des laminations géodésiques mesurées d'une surface hyperbolique fermée orientable S et de l'espace des laminations géodésiques mesurées projectives de S. Les résultats concernent les automorphismes de préservant le nombre d'intersection géométrique entre laminations et les homéomorphismes de préservant les ensembles de zéros de ces fonctions.
Accepted:
Published online:
Ken'ichi Ohshika 1; Athanase Papadopoulos 2
@article{CRMATH_2018__356_8_899_0, author = {Ken'ichi Ohshika and Athanase Papadopoulos}, title = {Hom\'eomorphismes et nombre d'intersection}, journal = {Comptes Rendus. Math\'ematique}, pages = {899--902}, publisher = {Elsevier}, volume = {356}, number = {8}, year = {2018}, doi = {10.1016/j.crma.2018.06.009}, language = {fr}, }
Ken'ichi Ohshika; Athanase Papadopoulos. Homéomorphismes et nombre d'intersection. Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 899-902. doi : 10.1016/j.crma.2018.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.06.009/
[1] On the homeomorphisms of the space of geodesic laminations on a hyperbolic surface, Proc. Amer. Math. Soc., Volume 142 (2014) no. 6, pp. 2179-2191
[2] Automorphism of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not. IMRN, Volume 1997 (1997) no. 14, pp. 651-666
[3] Automorphisms of Thurston's space of measured laminations, Stony Brook, NY, 1998 (Contemp. Math.), Volume vol. 256 (2000), pp. 221-225
[4] A note on the rigidity of unmeasured lamination spaces, Proc. Amer. Math. Soc., Volume 141 (2013) no. 12, pp. 4385-4389
[5] Reduced Bers boundaries of Teichmüller spaces, Ann. Inst. Fourier (Grenoble), Volume 64 (2014) no. 1, pp. 145-176
[6] A rigidity theorem for the mapping class group action on the space of unmeasured foliations on a surface, Proc. Amer. Math. Soc., Volume 136 (2008) no. 12, pp. 4453-4460
[7] Actions of mapping class groups, Handbook of Group Actions, Vol. I, Adv. Lect. Math. (ALM), vol. 31, Int. Press, Somerville, MA, USA, 2015, pp. 189-248
[8] Automorphisms and isometries of Teichmüller space, Proc. Conf., Stony Brook, New York, 1969 (Ann. Math. Stud.), Volume vol. 66 (1971), pp. 369-383
Cited by Sources:
Comments - Policy