On démontre deux résultats de rigidité pour des groupes d'automorphismes de l'espace
We prove two rigidity results for automorphism groups of the spaces
Accepté le :
Publié le :
Ken'ichi Ohshika 1 ; Athanase Papadopoulos 2
@article{CRMATH_2018__356_8_899_0, author = {Ken'ichi Ohshika and Athanase Papadopoulos}, title = {Hom\'eomorphismes et nombre d'intersection}, journal = {Comptes Rendus. Math\'ematique}, pages = {899--902}, publisher = {Elsevier}, volume = {356}, number = {8}, year = {2018}, doi = {10.1016/j.crma.2018.06.009}, language = {fr}, }
Ken'ichi Ohshika; Athanase Papadopoulos. Homéomorphismes et nombre d'intersection. Comptes Rendus. Mathématique, Volume 356 (2018) no. 8, pp. 899-902. doi : 10.1016/j.crma.2018.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.06.009/
[1] On the homeomorphisms of the space of geodesic laminations on a hyperbolic surface, Proc. Amer. Math. Soc., Volume 142 (2014) no. 6, pp. 2179-2191
[2] Automorphism of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not. IMRN, Volume 1997 (1997) no. 14, pp. 651-666
[3] Automorphisms of Thurston's space of measured laminations, Stony Brook, NY, 1998 (Contemp. Math.), Volume vol. 256 (2000), pp. 221-225
[4] A note on the rigidity of unmeasured lamination spaces, Proc. Amer. Math. Soc., Volume 141 (2013) no. 12, pp. 4385-4389
[5] Reduced Bers boundaries of Teichmüller spaces, Ann. Inst. Fourier (Grenoble), Volume 64 (2014) no. 1, pp. 145-176
[6] A rigidity theorem for the mapping class group action on the space of unmeasured foliations on a surface, Proc. Amer. Math. Soc., Volume 136 (2008) no. 12, pp. 4453-4460
[7] Actions of mapping class groups, Handbook of Group Actions, Vol. I, Adv. Lect. Math. (ALM), vol. 31, Int. Press, Somerville, MA, USA, 2015, pp. 189-248
[8] Automorphisms and isometries of Teichmüller space, Proc. Conf., Stony Brook, New York, 1969 (Ann. Math. Stud.), Volume vol. 66 (1971), pp. 369-383
Cité par Sources :
Commentaires - Politique