[Le problème de Dirichlet pour l'équation α-soliton de translation dans une bande]
Dans cette note, nous prouvons l'existence de solutions classiques au problème de Dirichlet pour l'équation de α-soliton de translation définie dans une bande de ; les données sur le bord sont deux copies d'une fonction convexe continue. Nous utilisons la méthode de Perron, dans laquelle une famille de grim reapers est employée comme barrière pour résoudre le problème de Dirichlet.
In this paper, we investigate the Dirichlet problem associated with the α-translating equation. Using the Perron method and a family of grim reapers as barriers, we prove the existence of a solution on a strip of and the boundary data is formed by two copies of a convex function.
Accepté le :
Publié le :
Rafael López 1
@article{CRMATH_2018__356_11-12_1179_0, author = {Rafael L\'opez}, title = {The {Dirichlet} problem on a strip for the \protect\emph{\ensuremath{\alpha}}-translating soliton equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1179--1187}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.10.005}, language = {en}, }
Rafael López. The Dirichlet problem on a strip for the α-translating soliton equation. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1179-1187. doi : 10.1016/j.crma.2018.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.10.005/
[1] Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differ. Equ., Volume 2 (1994), pp. 101-111
[2] The Dirichlet problem for graphs of prescribed anisotropic mean curvature in , Analysis, Volume 28 (2008), pp. 149-166
[3] Sur les surfaces définies au moyen de leur courbure moyenne ou totale, Ann. Sci. Éc. Norm. Supér., Volume 27 (2010), pp. 233-256
[4] Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differ. Equ., Volume 29 (2007), pp. 281-293
[5] Deux exemples de graphes de courbure moyenne constante sur une band de , C. R. Acad. Sci. Paris, Ser. I, Volume 311 (1990), pp. 539-542
[6] Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés, Bull. Soc. Math. Fr., Volume 119 (1991), pp. 443-462
[7] Methods of Mathematical Physics, Vol. II, Interscience, New York, 1962
[8] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983
[9] Properties of translating solutions to mean curvature flow, Discrete Contin. Dyn. Syst., Volume 28B (2010), pp. 441-453
[10] Mean curvature flow singularities for mean convex surfaces, Calc. Var., Volume 8 (1999), pp. 1-14
[11] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Am. Math. Soc., Volume 108 (1994) no. 520 (x+90 pp)
[12] Existence of translating solutions to the flow by powers of mean curvature on unbounded domains, J. Differ. Equ., Volume 250 (2011), pp. 3967-3987
[13] Dirichlet problem for anisotropic prescribed mean curvature equation on unbounded domains, J. Math. Anal. Appl., Volume 439 (2016), pp. 709-724
[14] Constant mean curvature graphs on unbounded convex domains, J. Differ. Equ., Volume 171 (2001), pp. 54-62
[15] Remark on the anisotropic prescribed mean curvature equation on arbitrary domain, Math. Z., Volume 264 (2010), pp. 507-511
[16] Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z., Volume 251 (2005), pp. 721-733
[17] Nonlinear evolution by mean curvature and isoperimetric inequalities, J. Differ. Geom., Volume 79 (2008), pp. 197-241
[18] The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. R. Soc. Lond., Volume 264 (1969), pp. 413-496
[19] On asymptotic behavior for singularities of the powers of mean curvature flow, Chin. Ann. Math., Ser. B, Volume 30 (2009), pp. 51-66
[20] Rotationally symmetric translating soliton of -flow, Sci. China Math., Volume 53 (2010), pp. 1011-1016
[21] Equations of mean curvature type in 2 independent variable, Pac. J. Math., Volume 69 (1977), pp. 245-268
[22] Complete translating solitons to the mean curvature flow in with nonnegative mean curvature (preprint) | arXiv
[23] Convex solutions to the mean curvature flow, Ann. of Math. (2), Volume 173 (2011), pp. 1185-1239
[24] The nature of singularities in mean curvature flow of mean convex surfaces, J. Am. Math. Soc., Volume 16 (2003), pp. 123-138
Cité par Sources :
Commentaires - Politique