[Le problème de Dirichlet pour l'équation α-soliton de translation dans une bande]
Dans cette note, nous prouvons l'existence de solutions classiques au problème de Dirichlet pour l'équation de α-soliton de translation définie dans une bande de
In this paper, we investigate the Dirichlet problem associated with the α-translating equation. Using the Perron method and a family of grim reapers as barriers, we prove the existence of a solution on a strip of
Accepté le :
Publié le :
Rafael López 1
@article{CRMATH_2018__356_11-12_1179_0, author = {Rafael L\'opez}, title = {The {Dirichlet} problem on a strip for the \protect\emph{\ensuremath{\alpha}}-translating soliton equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1179--1187}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.10.005}, language = {en}, }
Rafael López. The Dirichlet problem on a strip for the α-translating soliton equation. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1179-1187. doi : 10.1016/j.crma.2018.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.10.005/
[1] Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differ. Equ., Volume 2 (1994), pp. 101-111
[2] The Dirichlet problem for graphs of prescribed anisotropic mean curvature in
[3] Sur les surfaces définies au moyen de leur courbure moyenne ou totale, Ann. Sci. Éc. Norm. Supér., Volume 27 (2010), pp. 233-256
[4] Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differ. Equ., Volume 29 (2007), pp. 281-293
[5] Deux exemples de graphes de courbure moyenne constante sur une band de
[6] Le problème de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés, Bull. Soc. Math. Fr., Volume 119 (1991), pp. 443-462
[7] Methods of Mathematical Physics, Vol. II, Interscience, New York, 1962
[8] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983
[9] Properties of translating solutions to mean curvature flow, Discrete Contin. Dyn. Syst., Volume 28B (2010), pp. 441-453
[10] Mean curvature flow singularities for mean convex surfaces, Calc. Var., Volume 8 (1999), pp. 1-14
[11] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Am. Math. Soc., Volume 108 (1994) no. 520 (x+90 pp)
[12] Existence of translating solutions to the flow by powers of mean curvature on unbounded domains, J. Differ. Equ., Volume 250 (2011), pp. 3967-3987
[13] Dirichlet problem for anisotropic prescribed mean curvature equation on unbounded domains, J. Math. Anal. Appl., Volume 439 (2016), pp. 709-724
[14] Constant mean curvature graphs on unbounded convex domains, J. Differ. Equ., Volume 171 (2001), pp. 54-62
[15] Remark on the anisotropic prescribed mean curvature equation on arbitrary domain, Math. Z., Volume 264 (2010), pp. 507-511
[16] Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z., Volume 251 (2005), pp. 721-733
[17] Nonlinear evolution by mean curvature and isoperimetric inequalities, J. Differ. Geom., Volume 79 (2008), pp. 197-241
[18] The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. R. Soc. Lond., Volume 264 (1969), pp. 413-496
[19] On asymptotic behavior for singularities of the powers of mean curvature flow, Chin. Ann. Math., Ser. B, Volume 30 (2009), pp. 51-66
[20] Rotationally symmetric translating soliton of
[21] Equations of mean curvature type in 2 independent variable, Pac. J. Math., Volume 69 (1977), pp. 245-268
[22] Complete translating solitons to the mean curvature flow in
[23] Convex solutions to the mean curvature flow, Ann. of Math. (2), Volume 173 (2011), pp. 1185-1239
[24] The nature of singularities in mean curvature flow of mean convex surfaces, J. Am. Math. Soc., Volume 16 (2003), pp. 123-138
- The translating soliton equation, Minimal surfaces: integrable systems and visualisation. M:iv workshops, 2016–19, Cham: Springer, 2021, pp. 187-216 | DOI:10.1007/978-3-030-68541-6_11 | Zbl:1483.35178
- Minimum principles and a priori estimates for some translating soliton type problems, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 187 (2019), pp. 352-364 | DOI:10.1016/j.na.2019.05.008 | Zbl:1427.35047
Cité par 2 documents. Sources : zbMATH
Commentaires - Politique