Comptes Rendus
Mathematical analysis/Functional analysis
Polynomial birth–death processes and the second conjecture of Valent
Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 247-251.

The conjecture of Valent about the type of Jacobi matrices with polynomially growing weights is proved.

Nous démontrons la conjecture de G. Valent sur les matrices de type Jacobi avec des poids à croissance polynomiale.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2019.01.009

Ivan Bochkov 1

1 Faculty of Mathematics and Mechanics, St Petersburg State University, 198504, Saint Petersburg, Russia
@article{CRMATH_2019__357_3_247_0,
     author = {Ivan Bochkov},
     title = {Polynomial birth{\textendash}death processes and the second conjecture of {Valent}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {247--251},
     publisher = {Elsevier},
     volume = {357},
     number = {3},
     year = {2019},
     doi = {10.1016/j.crma.2019.01.009},
     language = {en},
}
TY  - JOUR
AU  - Ivan Bochkov
TI  - Polynomial birth–death processes and the second conjecture of Valent
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 247
EP  - 251
VL  - 357
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2019.01.009
LA  - en
ID  - CRMATH_2019__357_3_247_0
ER  - 
%0 Journal Article
%A Ivan Bochkov
%T Polynomial birth–death processes and the second conjecture of Valent
%J Comptes Rendus. Mathématique
%D 2019
%P 247-251
%V 357
%N 3
%I Elsevier
%R 10.1016/j.crma.2019.01.009
%G en
%F CRMATH_2019__357_3_247_0
Ivan Bochkov. Polynomial birth–death processes and the second conjecture of Valent. Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 247-251. doi : 10.1016/j.crma.2019.01.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.01.009/

[1] N.I. Akhiezer The Classical Moment Problem and Some Related Questions in Analysis, University Mathematical Monographs, Oliver and Boyd, Edinburgh–London, 1965

[2] C. Berg; R. Szwarc On the order of indeterminate moment problems, Adv. Math., Volume 250 (2014), pp. 105-143

[3] Ch. Berg; R. Szwarc Symmetric moment problems and a conjecture of Valent, Sb. Math., Volume 208 (2017) no. 3, pp. 335-359 | arXiv

[4] C. Berg; G. Valent The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes, Methods Appl. Anal., Volume 1 (1994) no. 2, pp. 169-209

[5] J. Gilewicz; E. Leopold; G. Valent New Nevanlinna matrices for orthogonal polynomials related to cubic birth and death processes, J. Comput. Appl. Math., Volume 178 (2005), pp. 235-245

[6] R. Koekoek; P. Lesky; R. Swarttouw Hypergeometric Orthogonal Polynomials and Their q-Analogues. With a Foreword by H. Tom Koornwinder, Springer Monographs in Mathematics, Springer, Berlin, 2010

[7] R. Romanov Order problem for canonical systems and a conjecture of Valent, Trans. Amer. Math. Soc., Volume 369 (2017) no. 2, pp. 1061-1078 | arXiv

[8] G. Valent Indeterminate moment problems and a conjecture on the growth of the entire functions in the Nevanlinna parametrization, Oberwolfach, 1998 (International Series of Numerical Mathematics), Volume vol. 131, Birkhäuser, Basel (1999), pp. 227-237

Cited by Sources:

Comments - Policy