In this work, we analyze a nonlinear partial differential equation (PDE) model for the total value adjustment on European options in the presence of a counterparty risk. We transform the nonlinear PDE into an equivalent one, involving a sectorial operator, and prove the existence and uniqueness of a solution.
Dans ce travail, nous analysons un modèle d'équations aux dérivées partielles (EDP) non linéaires pour l'ajustement XVA d'options européennes en présence d'un risque de contrepartie. Nous transformons l'EDP non linéaire en une équation équivalente, impliquant un opérateur sectoriel, et prouvons l'existence et l'unicité de la solution.
Accepted:
Published online:
Iñigo Arregui 1, 2; Beatriz Salvador 1, 2; Daniel Ševčovič 3; Carlos Vázquez 1, 2, 4
@article{CRMATH_2019__357_3_252_0, author = {I\~nigo Arregui and Beatriz Salvador and Daniel \v{S}ev\v{c}ovi\v{c} and Carlos V\'azquez}, title = {Mathematical analysis of a nonlinear {PDE} model for {European} options with counterparty risk}, journal = {Comptes Rendus. Math\'ematique}, pages = {252--257}, publisher = {Elsevier}, volume = {357}, number = {3}, year = {2019}, doi = {10.1016/j.crma.2019.03.001}, language = {en}, }
TY - JOUR AU - Iñigo Arregui AU - Beatriz Salvador AU - Daniel Ševčovič AU - Carlos Vázquez TI - Mathematical analysis of a nonlinear PDE model for European options with counterparty risk JO - Comptes Rendus. Mathématique PY - 2019 SP - 252 EP - 257 VL - 357 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2019.03.001 LA - en ID - CRMATH_2019__357_3_252_0 ER -
%0 Journal Article %A Iñigo Arregui %A Beatriz Salvador %A Daniel Ševčovič %A Carlos Vázquez %T Mathematical analysis of a nonlinear PDE model for European options with counterparty risk %J Comptes Rendus. Mathématique %D 2019 %P 252-257 %V 357 %N 3 %I Elsevier %R 10.1016/j.crma.2019.03.001 %G en %F CRMATH_2019__357_3_252_0
Iñigo Arregui; Beatriz Salvador; Daniel Ševčovič; Carlos Vázquez. Mathematical analysis of a nonlinear PDE model for European options with counterparty risk. Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 252-257. doi : 10.1016/j.crma.2019.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.03.001/
[1] PDE models and numerical methods for total value adjustment in European and American options with counterparty risk, Appl. Math. Comput., Volume 308 (2017), pp. 31-53
[2] Total value adjustment for European options with two stochastic factors. Mathematical model, analysis and numerical simulation, Comput. Math. Appl., Volume 76 (2018), pp. 725-740
[3] PDE representations of derivatives with bilateral counterparty risk and funding costs, J. Credit Risk, Volume 7 (2011), pp. 1-19
[4] Geometric Theory of Semilinear Parabolic Equations, Springer, 1981
[5] Modelling, mathematical analysis and numerical simulation of problems related to counterparty risk and CVA, Universidade da Coruña, Spain, 2018 (Ph.D. Thesis)
[6] The Mathematics of Financial Derivatives. A Students Introduction, Cambridge University Press, Cambridge, UK, 1996
Cited by Sources:
Comments - Policy